Microscale to nanoscale ferroelectric domain engineering of a near-stoichiometric LiNbO3 crystal was investigated by using a scanning force microscope. The single crystal LiNbO3 was grown by the double-crucible Czochralski method with automatic powder supply system. The electric field required to inverse the polarization direction of the domain was about one-ninth of the filed for a conventional congruent LiNbO3. The near-stoichiometric LiNbO3 crystal fixed on metal substrate was polished to a thickness of approximately 5 μm. Polarization directions of the domains were locally inverted by applying voltages with a conductive cantilever of the scanning force microscope. Furthermore, the domain structure was patterned in the LiNbO3 samples, where the domains were inverted by scanning with the cantilever on the sample while applying voltages.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.