In this study, anisotropic stiffness tensors were reconstructed based on fiber orientation distributions obtained from X-ray computer tomography (xCT). A preform was manufactured via a big area additive manufacturing (BAAM) system with carbon fiber (CF) filled acrylonitrile butadiene styrene (ABS). The tailored preform from additive manufacturing (AM) was used in the compression molding (CM) process to produce a low-void high-performance thermoplastic composite panel. An xCT technique was employed to detect the fiber orientations in CF/ABS composites manufactured via three different methods: AM from BAAM, extrusion compression molding (ECM), and AM-CM. The anisotropic stiffness tensor was obtained from the composite panel manufactured via the three manufacturing methods (AM, ECM, and AMCM). A micromechanics theory was used to obtain the orthotropic stiffness tensors of the composite panels and compared with the experimental values. The predicted stiffness tensors of AM and AM-CM composite panels were used to study the deformation characteristics of a steering wheel during airbag deployment by performing finite element analysis (FEA). The approach developed in this study can be utilized for evaluating high-performance composites.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.