In stereoscopic display systems, there is always a balance between creating a “wow factor,” using large horizontal disparities, and providing a comfortable viewing environment for the user. In this paper, we explore the range of horizontal disparities, which can be fused by a human observer, as a function of the viewing distance and the field of view of the display. Two studies were conducted to evaluate the performance of human observers in a stereoscopic viewing environment. The viewing distance was varied in the first study using a CRT with shutter glasses. The second study employed a large field-of-view display with infinity focus, and the simulated field of view was varied. The recorded responses included fusion/no fusion, fusion time, and degree of convergence. The results show that viewing distance has a small impact on the angular fusional range. In contrast, the field of view has a much stronger impact on the angular fusional range. A link between the degree of convergence and the fusional range is demonstrated. This link suggests that the capability of the human observer to perform eye vergence movements to achieve stereoscopic fusion may be the limiting factor in fusing large horizontal disparities presented in stereoscopic displays.
A model was developed to predict the range of disparities that can be fused by an observer from optometric measurements. This model uses parameters, such as dissociated phoria and fusional reserves, to predict an individual’s fusional range (i.e., the disparities that can be fused on stereoscopic displays) when the user views a stereoscopic stimulus from various distances. This model is validated by comparing its output with data from a previous study in which the individual fusional range of a group of observers was quantified while they viewed a stereoscopic display from distances of 0.5, 1.0, and 2.0 meters. Overall, the model provides good data predictions for the majority of the participants and can be generalized for other viewing conditions. The model may, therefore, be used within a customized stereoscopic system, which would render stereoscopic information in a way that accounts for the individual differences in fusional range. Because the comfort of an individual user also depends on the user’s ability to fuse stereo images, such a system is described that may, consequently, improve the comfort level and viewing experience for people with different stereoscopic fusional capabilities.
In a series of experiments, observers' cognitive and psychophysiological responses to pictorial stimuli were evaluated. In the first experiment, subjects were viewing a set of randomly presented images. After each image presentation, they rates every image on a number of cognitive scales. In the second experiment, images producing certain physiological effects - deactivating, neutral, or activating - were individually selected based on the results of the first experiment and shown to the subjects again. Psychophysiological measurements included electrocardiogram, hand temperature, muscle tension, eye movements, blood oxygen, respiration, and galvanic skin response. Our result indicate that images produced significant emotional changes based on verbal and physiological assessment. The changes were in agreement with the predictions derived from the metric that we developed in a number of cases that exceeded the change level. The direction of changes corresponded to previous findings reported elsewhere.
Conference Committee Involvement (1)
Image Quality and System Performance
19 January 2004 | San Jose, California, United States
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.