A flexoelectric bridge-structured microphone using bulk barium strontium titanate (Ba0.65Sr0.35TiO3 or BST) ceramic was investigated in this study. The flexoelectric microphone was installed in an anechoic box and exposed to the sound pressure emitted from a loud speaker. Charge sensitivity of the flexoelectric microphone was measured and calibrated using a reference microphone. The 1.5 mm×768 μm×50 μm micro-machined bridge-structured flexoelectric microphone has a sensitivity of 0.92 pC/Pa, while its resonance frequency was calculated to be 98.67 kHz. The analytical and experimental results show that the flexoelectric microphone has both high sensitivity and broad bandwidth, indicating that flexoelectric microphones are potential candidates for many applications.
A curvature sensor based on flexoelectricity using Ba0.64Sr0.36TiO3 (BST) material is proposed and developed in this paper. The working principle of the sensor is based on the flexoelectricity, exhibiting coupling between mechanical strain gradient and electric polarization. A BST curvature sensor is lab prepared using a conventional solid state processing method. The curvature sensing is demonstrated in four point bending tests of the beam under harmonic loads. BST sensors are attached on both side surfaces of an aluminum beam, located symmetrically with respect to its neutral axis. Analyses have shown that the epoxy bonding layer plays a critical role for curvature transfer. Consequently a shear lag effect is taken into account for extracting actual curvature from the sensor measurement. Experimental results demonstrated good linearity from the charge outputs under the frequencies tests and showed a sensor sensitivity of 30.78pC•m in comparison with 32.48pC•m from theoretical prediction. The BST sensor provides a direct curvature measure instead of using traditional strain gage through interpolation and may offer an optional avenue for on-line and in-situ structural health monitoring.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.