There is increasing demand for functional polymeric optical coatings for plastic substrates. In the case of anti-reflective (AR) coatings, this is challenging because polymers exhibit a relatively narrow range of refractive indices. We synthesized a four-layer AR stack using hybrid polymer:nanoparticle materials deposited by resonant infrared matrixassisted pulsed laser evaporation (RIR-MAPLE). An Er:YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and PMMA, alternating with a low-index solution of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with relative transmission over 94%, scattering less than 5% and a reflection coefficient below 0.8% across the visible range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.