In terms of thermal and electromagnetic isolation properties, Nanostructured Metamaterials may present important advantages compared to current employed materials. In this work, we present the synthesis routes and the preliminary characterization results of some metamaterials based on Poly-ether-ether-ketone and nanostructured anodic oxides, with low thermal conductivity, combined with Au nanocolumns and three-dimensional nanonetworks. The results reveals proper magnetic and electromagnetic properties and suggest their suitable use under vacuum and cryogenic conditions.
In cryogenics, working together with cryocoolers, the thermal straps are a critical thermal element, since they thermally link the instrument with the cold source. In optical elements that work at cryogenic temperatures, the thermal path, and therefore the straps, must isolate them from the vibrations of the cryocoolers. Consequently, its stiffness is a characteristic to consider in the design. But, in the case of optical focal plane arrays, working at very low temperatures such as 50 mK, it can be resonant with the low frequency range of the cryocoolers, and its dissipation can break the superconducting state of the sensors, the basis of its functioning. It is therefore an undesired thermal effect derived from structural behavior. Design limitations impose the need for straps where stiffness is just as important as its conductance. The stiffness value needed is much lower than the one found in commercial straps. Therefore, this work highlights the design, and characterization tests of different strap prototypes in order to achieve the necessary resistivity and thermal conductivity for low cryogenic temperatures. The thermal straps were initially designed for the Cryostat facility for 2K Core Calibration (C2CC) a ground equipment for the ATHENA project (Advanced Telescope for High - ENergy Astrophysics, ESA).
The PLAnetary Transits and Oscillations of stars mission (PLATO) is an ESA M3 mission planned to detecting and characterizing extrasolar planetary systems as Earth-like exoplanets orbiting around the habitable zone of bright solartype stars. PLATO consists of 26 cameras (CAM) mounted on the same instrument platform in order to cover a large field of view (FoV) with the highest possible photon detection statistics. Each PLATO CAM consists of a telescope Optical Unit (TOU), the FPA, and the detector read-out Front End Electronics (FEE). The FPA is the structure located at the focal plane position of the CAM that supports four identical CCDs and the mechanical interface parts to match with the TOU and FEE. Due to the critical repeatability aspect of the mission, each FPAs must be identical with very stringent specifications which includes strict opto-mechanical positioning tolerances. Also the number of FPAs that have to be manufactured, integrated and tested at the same time requires a special space industrialization process and an optimized metrology verification due to the very restrictive design and schedule constraints. In order to solve this challenge a flight-representative QM has been developed in order to validate a manufacturing, assembly, integration and verification (AIV) on-ground processes. As well, an innovative metrology system has being developed for improving the alignment and verification under the tightly AIV requirements before, during and after a proper qualified campaign in a very demanding environment. INTA has adapted into an ISO6 cleanroom facility a high accuracy and vast performance non-contact CNC vision dimensional measuring system, and has developed a Ground Support Equipment (GSE) for a real-time alignment step in order to reach that requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.