As the semiconductor chip size continues to decrease, extreme ultra violet lithography (EUVL) is becoming a vital technology to achieve the high resolution patterning required for sub-7 nm node technologies. The patterning resolution of EUVL is highly dependent on the performance of EUV photoresists (PR) which can lead to variations in the patterning process and affects the overall quality of the semiconductor. Although there are several traditional methods to determine a patterning performance of PR, it becomes more challenging as scale tighten. To this end, we develop a new analysis method, named ‘W-curve’, defining EUV PR resolution using ADI SEM images, that visualizes micro-bridge and -break defect cliffs and local CD uniformity at the same time. Using W-curve method, 3 different PR performance at 36 nm-pitch line/space pattern was clearly distinguished. Also, the obtained result was well correlated with time-series trend data and electric test data. Therefore, we believe that W-curve method could provide a new insight for understanding EUV PR performance and improve patterning performance in a facile and versatile manner.
Metal oxide resists (MORs) have been becoming one of the most promising candidates that facilitates the extension of EUV single exposure by improving both lithographic resolution and etch selectivity. However, to succeed high volume manufacturing, the MORs process should be robust and persistent regardless of lithographic process fluctuation that might occur. In this work, the systematic examinations on the MORs process have been explored in order to understand the MORs patterning mechanism. We found that the ADI CD (After Development Inspection Critical Dimension) could be varied with trivial fluctuation of EUV radiation, humidity, and incomplete condensation reaction. In particular, the humidity around a coated resist was the important element that affected the condensation reaction and determined the insolubility of MORs against developer solution, which consequently defines the ADI CD. Thus, the methods that enable not only the moisture control but the sufficient condensation reaction were carefully examined. Moreover, it is investigated whether MORs can enhance further the etch selectivity while reducing the intrinsic resist defect. Several strategies have been implemented, which allow the CD variation to be reduced and the process window to be enlarged compared to the early stage MORs processes.
EUV lithography has been one of the key factors that enables the continuation of semiconductor scaling beyond N7. While it is a vital technique for the HVM of the most recent advanced logic and DRAM devices, the EUVL still needs more efforts in order to fully exploit its capability and extend the application. One particular aspect that has been considered as of critical importance is the optical/chemical stochastic effects which may cause L/S, contact pattern defects limiting the efficiency of EUVL. The simplest way to alleviate the stochastic effects is to employ the higher EUV exposure dose; however, this approach is impractical as it obviously leads to even lower productivity. In this work, the alternative chemicals - such as EUV PTD developer and NTD rinse which are specifically prepared to overcome the stochastic effects - are examined to enhance the performance efficiency of EUVL. The focused features that thoroughly explored are EUV dose, local CD uniformity, PR swelling, pattern collapse, and defects. It is found that, with the chemical composition modification of developer and rinse, EUV pattern fidelity can be effectively optimized resulting in extended process window and improved productivity. It is expected that this work would not only facilitate the extension of EUV application but also help understand how EUV resists behave when they are under the influence of ancillaries.
For the past years, ArF immersion has been employed as the major lithography tool in the foundry manufacturing to fabricate the patterns of minimum pitch and size. However, for semiconductor scaling beyond N7 the application of EUV lithography is considered to be crucially important to overcome the physical limitation of ArF immersion and to realize even smaller patterns. In the case of ArF photo processes, the best mask size for a specific pitch could be selected with the consideration of optical performances such as NILS, MEEF, etc. In contrast, for the EUV processes the optical and resist stochastic effect should also be taken into account as an important factor in deciding the best mask size. In this paper, we are going to discuss the dose and mask size optimization process for an DRAM contact hole layer with EUV lithography utilizing stochastic simulations; this contains also the stochastic response of the resist. In order to calibrate a predictive stochastic resist model, which is required for this application, measurements of the stochastic resist response are necessary. In addition, the systematic and stochastic errors of CD-SEM measurements have to be estimated. We will compare experimentally obtained NILS and MEEF to simulated results, which are in very good agreement. Also, we show a comparison of experimental and computational analysis of LCDU (Local CD Uniformity).
Boo-Hyun Ham, Il-Hwan Kim, Sung-Sik Park, Sun-Young Yeo, Sang-Jin Kim, Dong-Woon Park, Joon-Soo Park, Chang-Hoon Ryu, Bo-Kyeong Son, Kyung-Bae Hwang, Jae-Min Shin, Jangho Shin, Ki-Yeop Park, Sean Park, Lei Liu, Ming-Chun Tien, Angelique Nachtwein, Marinus Jochemsen, Philip Yan, Vincent Hu, Christopher Jones
As critical dimensions for advanced two dimensional (2D) DUV patterning continue to shrink, the exact process window becomes increasingly difficult to determine. The defect size criteria shrink with the patterning critical dimensions and are well below the resolution of current optical inspection tools. As a result, it is more challenging for traditional bright field inspection tools to accurately discover the hotspots that define the process window. In this study, we use a novel computational inspection method to identify the depth-of-focus limiting features of a 10 nm node mask with 2D metal structures (single exposure) and compare the results to those obtained with a traditional process windows qualification (PWQ) method based on utilizing a focus modulated wafer and bright field inspection (BFI) to detect hotspot defects. The method is extended to litho-etch litho-etch (LELE) on a different test vehicle to show that overlay related bridging hotspots also can be identified.
A diffractive optical modulator has been fabricated based on a micromachining process. Novel
properties of its fast response time and dynamics were fully understood and demonstrated for the
strong potentials in embedded mobile laser display. Bridged thin film piezo-actuators with so called
open mirror diffraction structure has been designed. Optical level package also was achieved to
successfully prove its display application qualities. Display circuits and driving logic were developed
to finally confirm the single-panel laser display at a 240Hz VGA (640×480). With its efficiency of
more than 75% and 13cc volume optical engine with the MEMS-based VGA resolution SOM
showed 7 lm brightness at a 1.5W electrical power consumption. Detailed design principle,
fabrication, packaging and performances of the invented SOM are described.
In this paper, two different methods of double exposure are proposed to improve the resolution in low k1 lithography. One is using an additional mask to complement the lack of image contrast. The other is to fix the mask and only use combinations of illumination systems to increase image contrast. By applying image assisting double exposure to asymmetry dense contact under k1=0.33, the process window can be doubled in comparison to the single exposure method. By an appropriate design of two masks, we could also minimize the image distortion from overlay shift by mixture of masks. Effective first order efficiency is defined as a new term in double exposure with complementary illumination. The larger the value is, the better the image contrast becomes. Through an experiment and simulation in k1=0.30, in double exposure with two illuminations and the same mask, that wider process window was obtained than in single exposure with optimized illumination system, and also 0.10um of DOF (Depth of Focus) was obtained under k1=0.28.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.