Reliable high energy laser sources had been proven in the past to be the bottle neck for space-borne LIDAR instruments. The presented FULAS laser optical design concept and the developed technologies define a technology baseline for a high variety of potential LIDAR applications. The technology provides a reliable space compatible system design, optimized with respect to lifetime and in especial laser induced contamination. The applied design principles and modularity allow proven energy scalability, flexible modes of operation and a manifold of opportunities for tailoring of the output wavelength. The concept, some details of the design and the potential for future application are addressed in this publication
For atmospheric LIDAR instruments in space, a manifold of scientific applications exists. But due to the lack of high energy laser sources providing the performance, reliability and lifetime necessary to operate such instruments in space, realization is currently seen as still very critical in the community.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.