The booming fields of antiferromagnetic spintronics and terahertz (THz) magnonics urge to understand the ultrafast dynamics triggered in antiferromagnets by ultrashort stimuli. The interest in ultrafast magnetism of antiferromagnets has led to new and vastly counter-intuitive findings in experimental and theoretical research. We report on the ultrafast spin and lattice dynamics in a rutile antiferromagnet.
A Study of THz spin dynamics was performed in a single crystal of antiferromagnetic TbFeO3. Terbium orthoferrite exhibits magnetic phase transition of the Jahn-Teller type resulting in simultaneous rotation of both iron spins and terbium orbital moments and even leading to the emergence of a multiferroic state. A single-cycle THz pulse, generated in the LiNbO3 crystal, is used as a driven torque. The temperature-dependent measurements, across the phase transition region, revealed, that apart from the expected coexistence of two well-distinguished modes of antiferromagnetic resonance at 650 GHz and 450 GHz, near the phase transition temperature, the lower frequency mode bandwidth widens significantly with a subsequent increase of the spectral weight. The widening effect, revealed near the transition temperature, is due to the strong interaction between Tb-Fe sublattices. The interaction is increasing at lower temperatures so that the dynamics, detected in the Fe-sublattice, are mainly governed by the Tb-sublattice. Surprisingly, near the transition point, even lover frequency modes (~150 GHz), assigned to the impurity modes, were observed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.