This will count as one of your downloads.
You will have access to both the presentation and article (if available).
In 2017, the so called “grinding process validation approach” (gPVA) was introduced to determine suitable parameter windows. The method allows the definition of parameter windows for grinding tools and materials. Parameter adjustments for optimum results are possible due to the experimentally determined dependence on specific chip volume and tool pressure.
The system was originally developed to describe brittle grinding processes on standard grinding machines. Tests on an ultra-precision lathe provide process parameter data on ductile mode machining of tungsten carbide using UPM machines. This paper reports on gPVA being applied to transfer the ductile machining process from UPM machineries to a standard CNC grinding machine.
Improved performance of CMP processes through targeted adjustment of polishing slurry and polish pad
By means of a plan processing of N-BK7 and SF56 samples by a plan-polishing process, the influence on the process results, material removal rate (MRR), micro roughness and cleanliness caused by slurry and polishing pad is shown. It turns out that the type of polish pad has the biggest impact on the results. The easy-to-process material N-BK7 shows only little influence by the type of slurry used. The more challenging SF56, however, shows significant effects, especially in the area of the resulting micro roughness and the appearance of surface damages like orange peel. Especially the use of Auerpol® PZ500 shows clear advantages here.
For a selection of three out of nine polishing pads, the effect of density variation of the slurry was also investigated. Lower particle concentrations lead to lower material removal rates. This applies to both materials. The more sensitive SF56 shows a reduction in micro roughness by the use of a less dense slurry.
The correct selection of the polishing pad has a positive effect on the material removal rate and/or the micro roughness in all tested materials. An adaptation of the type and concentration of the slurry is especially important for more sensitive materials and in combination with the right polishing pad.
In view of the development towards special materials and small lot sizes, the targeted and correct selection of polishing slurries and pads becomes more and more important. The information required for this purpose on the behavior of the pads and slurries available on the market must therefore first be determined in a targeted manner and clearly presented.
In this paper, we publish first results on ductile machining of tungsten carbide dies on a standard CNC grinding machine.
This approach enables the pre-machining and finishing of tungsten carbide dies in one machine, in one clamping with the same tool.
Recent process analyses of the ductile mode grinding process of brittle materials have demonstrated that the critical indentation depth hcu,crit, that determines the transition from brittle mode to ductile mode removal, can significantly be shifted to higher values by adjusting process parameters such as the type of coolant and its pH value: e.g. for tungsten carbide up to 1600 nm and for BK7 glass up to 350 nm depth. This paper reports on a feasibility study to extend the process window of ductile mode material removal. Applying optimized ductile process parameter sets, enabling values of the critical depth of cut larger than 1 micron, single point diamond turning (SPDT) of binderless tungsten carbide molds has been successfully tested applying UPM machineries.
Experimental data will be presented demonstrating that by controlling and adjusting ductile process parameters only, it is possible to extend its process window into regimes that are today not yet machinable: binderless tungsten carbide molds for precision glass molding have been processed in a ductile removal mode by SPDT generating surface roughness levels of less than 2 nm rms.
An analysis of the adjustment of the critical process parameters will be presented together with a detailed description of the First Light experiments towards SPDT of binderless tungsten carbide molds.
In contrast to classic polishing methods, the high determinism of SA polishing allows a very specific correction of the surface defect. The methods of magneto-rheological finishing (MRF) [1], [2] and ion beam figuring (IBF) [3], [4] stand out in particular because of the achievable shape accuracy. However, this leads to the fact that a principle of manufacturing "As exact as possible, as precise as necessary" [5] is often ignored. The optical surfaces often produced with unnecessary precision, result at least in increased processing times.
The increasing interconnection of the production machines and the linking with databases already enables a consistent database to be established. It is possible to store measurements, process characteristics or tolerances for the individual production steps in a structured way. The difficulty, however, lies in the reasonable evaluation of the measurement data.
This is where this publication comes in. The smart evaluation of the measurement data with the widespread Zernike polynomials should result in a classification, depending on the required manufacturing tolerance. In combination with the so-called ABC analysis, all surface defects can be categorized. In this way, an analytic breakdown of a - initially confusing - overall problem is made. With the aid of cost functions [6] an evaluation and consequently a deduction of actions is made possible. Thus, for example, the isolated processing of rotationally symmetrical errors in spiral mode, setup times and machining times can be reduced while avoiding mid spatial frequency errors (MSFE) at the same time.
There are a several approaches and methods to determine SSDs known in literature. However, many of them inevitably lead to the destruction of the workpiece. Although others are non-destructive, but very complex in design and/or associated with large investments. Likewise, only a few are suitable for determining SSDs on ground rough surfaces.
Filled-Up Miicroscopy (FUM) is an alternative approach to approximating the depth of SSDs, even on rough surfaces without destroying them. At a first glance at the method, the procedure is described in detail and all necessary steps of preparing the samples are shown. A first comparison with the known Ball Dimpling Method confirms the functionality of the concept.
The "replica method" has been around in metal analysis and processing. Film is used in order to take an impression of a surface. Then, it is analysed for structures. In optical production, compound moulding seems advantageous in roughness determination in inaccessible spots or on large components (astrological optics). In preliminary trials, different glass samples with different roughness levels were manufactured. Imprints were taken from these samples (based on DIN 54150 „Abdruckverfahren für die Oberflächenprüfung"). The objective of these feasibility tests was to determine the limits of this method (smallest roughness determinable / highest roughness). The roughness of the imprint was compared with the roughness of the glass samples. By comparing the results, the uncertainty of the measuring method was determined.
The spectrum for the trials ranged from rough grind (0.8 μm rms), over finishing grind (0.6 μm rms) to polishing (0.1 μm rms).
The present work concentrates exclusively on the theoretical calculation of the deformations occurring in various clamping situations, which are traced back to reality.
Ansys Workbench is used as a tool for the calculations. The test series under laboratory conditions for the validation of the theoretical results will be part of further work.
Not only increasing requirements on the imaging properties, but also new lens shapes, such as aspheres or lenses with free-form surfaces, require innovative production processes. However, these lenses need new deterministic sub-aperture polishing methods that have been established in the past few years. These polishing methods are characterized, by an empirically determined TIF and local stock removal.
Such a deterministic polishing method is ion-beam-figuring (IBF). The beam profile of an ion beam is adjusted to a nearly ideal Gaussian shape by various parameters. With the known removal function, a dwell time profile can be generated for each measured error profile. Such a profile is always generated pixel-accurately to the predetermined error profile, with the aim always of minimizing the existing surface structures up to the cut-off frequency of the tool used [2].
The processing success of a correction-polishing run depends decisively on the accuracy of the previously computed dwell-time profile. So the used algorithm to calculate the dwell time has to accurately reflect the reality. But furthermore the machine operator should have no influence on the dwell-time calculation. Conclusively there mustn’t be any parameters which have an influence on the calculation result. And lastly it should take a minimum of machining time to get a minimum of remaining error structures. Unfortunately current dwell time algorithm calculations are divergent, user-dependent, tending to create high processing times and need several parameters to bet set.
This paper describes an, realistic, convergent and user independent dwell time algorithm. The typical processing times are reduced to about 80 % up to 50 % compared to conventional algorithms (Lucy-Richardson, Van-Cittert …) as used in established machines. To verify its effectiveness a plane surface was machined on an IBF.
The study presented here shows that this method can also lead to misinterpretations. Known relationships, such as the influence of the polishing pad, the concentration of the suspension and the influence of the processed materials play an important role. An extension of the procedure of DIN 58750-3 for the test of a polishing agent can help in a task-specific characterization of polishing slurries.
In the research project ArenA-FOi (Application-oriented analysis of resource-saving and energy-efficient design of industrial facilities for the optical industry), a touching procedure is used in the point-attack, and in this case a close look is made as to whether a change of several process parameters is meaningful during a processing. The ADAPT tool in size R20 from Satisloh AG is used, which is also available for purchase. The behavior of the tool is tested under constant conditions in the MCP 250 CNC by OptoTech GmbH. A series of experiments should enable the TIF (tool influence function) to be determined using three variable parameters. Furthermore, the maximum error frequency that can be processed is calculated as an example for one parameter set and serves as an outlook for further investigations. The test results serve as the basic for the later removal simulation, which must be able to deal with a variable TIF. This topic has already been successfully implemented in another research project of the Institute for Precision Manufacturing and High-Frequency Technology (IPH) and thus this algorithm can be used.
The next step is the useful implementation of the collected knowledge. The TIF must be selected on the basis of the measured data. It is important to know the error frequencies to select the optimal TIF. Thus, it is possible to compare the simulated results with real measurement data and to carry out a revision. From this point onwards, it is possible to evaluate the potential of this approach, and in the ideal case it will be further researched and later found in the production.
With this paper, the authors want to give a prospect of a currently running research with the aim of increasing the efficiency of chemo-mechanical polishing processes by a systematic selection and conditioning of the polishing suspension. They want to show that small amounts of well-conditioned and stabilized polishing suspension could be a tool to improve the efficiency in CMP processes under the influence of the global trend to products that are more individual and down to one piece flow production.
Main parts of this research are the identification of influences of polishing suspensions on the quality criteria of optical components and the creation of a method to find well-working suspension parameters in a deterministic and reproducible way.
First, there is the optical and mechanical design of the optical part and system. In this context, it is important to consider what modifications compared to the current standard design are possible respectively useful. Thus, the modifications will only concentrate on parts of the optic that do not interfere with the optical functionality. Furthermore in this part of the study the main aspect is the clamping situation of the optical part in a holder or an optical system. It will be discussed, whether it is useful to add special clamping surfaces respectively a clamping flange in contrast to the standard design. The faultless functioning of the optics has always first priority.
Second, the manufacturing process itself has a great number of single steps. Therefore, a main part of the research is the investigation of current clamping situations in optics manufacturing, with prospect to improve them in order to work perfectly with the design modifications, as mentioned above. This part of the investigation focuses on the clamping system for the lens on each machine necessary for manufacturing.
In the scope of this paper the authors want to summarize characteristics and deficits of current clamping systems and workpiece mounts and give a prospect of the following course of action.
In this publication the vignetting field stop procedure is discussed. Additionally the deflectometric setup is described. Because of some typical influences of beam deflection to the accuracy of angle measurement by using the vignetting principle, suitable methods of calibration for the sensor are examined and the results of these methods are presented.
Furthermore the technical principle of deflectometric measurements using an angle detecting device is explained inclusive of all random and systematic errors generated by the setup.
The last part of this publication shows the actual result of test measurements with calculated absolute deviation of errors with a large lateral dimension as well as the determination of the maximal achievable lateral resolution by detecting mid frequent structures on flat and spherical test parts with a diameter of 300 mm. These measurements are compared critically to reference results which are recorded by interferometry and further scanning methods.
In this paper several interferometer absolute testing methods to measure flat surfaces are compared. The main objective was to name a value for the achievable accuracy. Therefor four different methods were analyzed:
- 1. The three flat test, a method which is already used several decades to determine the quality of a flat surface. As a result, two absolute measured profiles, horizontal and vertical, can be calculated.
-
2. The multi rotation test, an extension of the classical three flat test. The big advantage of this method is a fully three dimensional map of the systematical error.
-
3. The systematical error calculated by the SSI-A. Hereby several subapertures are measured over the whole surface. The redundant information’s of the overlapping regions can be used to calculate the systematical error of the system.
-
4. The rotation of the transmission flat relatively to the interferometer. Thereby the rotation unsymmetrical errors can be calculated and subtracted.
Until now off-axis mirrors were difficult or almost impossible to produce. With the processes developed in IFasO, high quality mirrors become possible. For this reason, this paper describes the manufacturing of off-axis surfaces and its problems.
The mirror production used in the project IFasO is based on the specific design of the CNC center developed by the company Optotech. This center UPG2000 is capable of grinding, polishing, sagitta measurement and interferometric measurement in one mounting of the specimen. Usually a large optics has to be transported during their manufacturing after every individual process step. There is always a risk of damage of the specimen. The exact orientation of the surface relatively to the tool position is also required. This takes a huge amount of time and makes up most of the production time.
In this presentation the use of UPG2000 and the next steps within the process development are described. In the current status the manufacturing of large off-axis elements with a PV < λ/10 rms is reproducible.
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one