The ability to integrate nano-components onto MEMS devices in a controlled manner has been a limiting problem in interfacing micro-nano technologies, for the current methods of growing nano-structures/wires are inflexible and cannot be supported as a post-processing step for on-chip microelectronics. The main objective of this work is to selectively induce nucleation and further achieve crystal growth of silicon nano-structures/wires at specified sites without contaminating the outlining regions. A method utilizing a Q-switched, 532 nm, 10 Hz, Nd:YAG laser coupled to cantilevered NSOM fiber probes is proposed in this deposition experiment. A finite difference time domain simulation result is offered to illustrate the spatial confinement of the laser transmission field intensity emanating from the tip aperture. A vapor phase silane mixture (1% silane, 99% helium) was introduced into the vacuum chamber at pressures ranging from 200 to 440 Torr during the deposition experiments. The deposition and growth results for silicon nano-structure/wires on silicon substrates will be presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.