In this work we build upon a previously published technique for printing dielectric ramps and printed RF interconnects across leveled surfaces to gain a better understanding of the effects that the dielectric material itself has on the conductivity of the printed conductive ink. The use of printed dielectric ramps, referred to as fillets, to assist in additively manufactured RF circuits and interconnects can be found throughout literature. One of the most widely used materials for these ramps, the UV-curable adhesive NEA-121, was found to exhibit physical changes when exposed to high curing temperatures and to have a significant effect on the conductivity of a wide variety of commercially available conductive ink materials; in some cases causing a 2x drop in conductivity compared with the expected conductivity reported by the manufacturer. We report on the conductivity effects from printing on the NEA-121 dielectric surface for three commercially available Ag inks for an RF circuit application and report the manufacturing techniques necessary to optimize both the dielectric ramp and the conductive ink performance.
Piezoresistive strain sensors, commonly known as resistance strain gauge, have many important applications. In this work, an alternative method to fabricate piezoresistive strain sensors directly on the structure of interest is demonstrated using a particle-free silver ink as the sensing material. The sensing material is first printed as a rectangular film on the structure of interest and a conductive serpentine pattern is generated by selective laser sintering. Only the material exposed to the focused laser is sintered and becomes conductive. The rest is washed-off by 1-dodecene solvent, leaving only the serpentine pattern, which serves as the piezoresistive strain sensor. This alternative method eliminates the need for a carrier or backing substrate and thus improves the mechanical coupling between the sensing material and the structure of interest. It also removes reinforcement effect due to the stiffness of the carrier substrate. Results from electrical characterization revealed that laser sintering power is a crucial parameter that influences fundamental properties of the sensing material such as electrical conductivity and work function. In addition, it was observed that there exists an optimum laser sintering power that results in a maximum gauge factor (GF). For strain sensors, the GF is the most important parameter because it is the measure of sensor sensitivity. When the particle-free silver ink was printed as a serpentine pattern followed by thermal sintering on a hot plate, a lower GF was measured. This shows that the alternative method to fabricate piezoresistive strain sensors is more attractive than printing the serpentine pattern then thermally sintering it.
This work explores additive manufacturing technology to fabricate hybrid circuits comprising of optical and electronic materials as photonic and electrical interconnects, respectively. Several polymeric optical materials have been investigated (including SU8, PDMS, UV15 and Norland adhesives) as waveguides directly printed on commercial circuit boards such as FR4 and Rogers TC600. An optical waveguide printed over RF (radio frequency) transmission lines and surface mount electronic components is demonstrated. As an application, the waveguide is used as an alternative to traditional electrical interconnects to control an RF switch for routing an RF signal from a single source to different locations. This work also investigates the feasibility of printed polymeric waveguides as a sensing platform for monitoring humidity and temperature changes in electronic circuits. Results show that the SU8 waveguide responds significantly to change in temperature and humidity and the response is appropriate for logistics applications such as cold chain supply.
Direct printing technique has become indispensable in flexible electronics and low cost sensor applications. It has transformed into an enabling technology for many flexible devices. However, it is not very well explored for printing optical materials. In this work, a micro-dispense printer for printing polymeric optical waveguides was custom-built. It was employed to develop a simple method to couple light into printed optical interconnects. It was also used to apply a voltage bias during printing and drying of electro-optic polymer (SEO110) to pole the SEO110 in-situ with the goal of eliminating the need for traditional high temperature contact poling. With this in-situ poling method, electro-optic effect in SEO110 was demonstrated.
An ultraviolet (UV) photodetector utilizing an inkjet printable , UV photoconducting biopolymer was fabricated and the
performance of the photodetector was characterized for varying thickness layers of the biopolymer. The biopolymer was
formed of deoxyribonucleic acid (DNA), the Clevios P formulation of poly(3,4-ethylenedioxythiophene)-
poly(styrenesulfonate) (PEDOT:PSS), and hexadecyltrimethyl-ammonium chloride (CTMA); this was then combined
with phenyl-C61-butyric acid methyl (PCBM) to form the printable, UV photoconducting biopolymer. Using a 260-nm
source, the highest measured responsivity of the photodetectors is 1.2 mA/W at 20 V bias.
Thermal nanoimprint lithography (NIL) is presented as an alternative fabrication technique for patterning deoxyribonucleic acid (DNA) biopolymer films for photonic device applications. The techniques and procedures developed for directly imprinting optical waveguide structures on a DNA biopolymer using NIL, bypassing the use of a resist layer and any chemical processing, are outlined here. The fabrication technique was developed with a Nanonex NX-2600 NIL flexible membrane system. Additionally, a process for using a Suss MicroTec ELAN CB6L substrate bonder is discussed as an alternative to commercially available NIL systems.
A polymer electro-optic (EO) waveguide beam-steering device with deoxyribonucleic acid (DNA) biopolymer conductive cladding layers and a core layer of the commercially available EO polymer SEO100 is demonstrated with 100% relative poling efficiency. This demonstration device exhibits a deflection efficiency of 99 mrad/kV with a corresponding in-device EO coefficient r33 of 124 pm/V at 1550 nm. When the DNA biopolymer bottom cladding layer is replaced by the commonly used cladding polymer UV15, the deflection efficiency and in-device r33 drop to 34 mrad/kV and 43 pm/V, respectively.
In this paper we present our current research in exploring a DNA biopolymer for photonics applications. A new
processing technique has been adopted that employs a modified soxhlet-dialysis (SD) rinsing technique to completely
remove excess ionic contaminants from the DNA biopolymer, resulting in a material with greater mechanical stability
and enhanced performance reproducibility. This newly processed material has been shown to be an excellent material
for cladding layers in poled polymer electro-optic (EO) waveguide modulator applications. Thin film poling results are
reported for materials using the DNA biopolymer as a cladding layer, as are results for beam steering devices also using
the DNA biopolymer. Finally, progress on fabrication of a Mach Zehnder EO modulator with DNA biopolymer
claddings using nanoimprint lithography techniques is reported.
DNA-CTMA is an attractive material to explore for reconfigurable optical and electronic devices. Its dielectric
constant at microwave frequencies can be tuned by applying a DC electric field. In this work, the origin of dielectric
tunability and other ferroelectric-like behavior observed in DNA-CTMA films is investigated. Results suggest that
the dominant polarization mechanism is ionic in nature and is caused by intentionally retaining excess ions in the
DNA-CTMA precipitate during processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.