We have proposed a method of simultaneously measuring aerodynamic sound and fluid ow using parallel phase- shifting interferometry (PPSI). PPSI can observe phase of light instantaneously and quantitatively. This method is useful for understanding the aerodynamic sound because PPSI can measure near the source of the aerodynamic sound. However, the components of sound and ow should be separated in order to observe detail near the source of sound inside a region of ow. Therefore, we consider a separation of the component of sound from simultaneously visualized images of sound and ow. In previous research, a spatio-temporal filter was used to extract a component satisfying the wave equation. The ow and the sound are different physical phenomena, and the ow cannot be expressed by the wave equation. Hence, we think that the spatio-temporal filter enables us to separate the component of sound from the simultaneously visualized images. In this paper, we propose a method for separation of ow and sound using spatio-temporal filter in order to visualize the component of the aerodynamic sound near its source. We conducted an experiment of the separation of data measured by PPSI. The results show that the spatio-temporal filter can extract the sound from air-ow except for the sound near objects and boundaries.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.