In ophthalmology, a reliable means of diagnosing glaucoma in its early stages is still an open issue. Past efforts, including forays into fluorescent angiography (FA) and early optical coherence tomography (OCT) systems, to develop a potential biomarker for the disease have been explored. However, this development has been hindered by the inability of the current techniques to provide useful depth and microvasculature information of the optic nerve head (ONH), which have been debated as possible hallmarks of glaucoma progression. We reasoned that a system incorporating a spectral-domain OCT (SD-OCT) based Optical Microangiography (OMAG) system, could allow an effective, non-invasive methodology to evaluate effects on microvasculature by glaucoma. SD-OCT follows the principle of light reflection and interference to produce detailed cross-sectional and 3D images of the eye. OMAG produces imaging contrasts via endogenous light scattering from moving particles, allowing for 3D image productions of dynamic blood perfusion at capillary-level resolution. The purpose of this study was to investigate the optic cup perfusion (flow) differences in glaucomatous and normal eyes. Images from three normal and five glaucomatous subjects were analyzed our OCT based OMAG system for blood perfusion and structural images, allowing for comparisons. Preliminary results from blood flow analysis revealed reduced blood perfusion within the whole-depth region encompassing the Lamina Cribrosa in glaucomatous cases as compared to normal ones. We conclude that our OCT-OMAG system may provide promise and viability for glaucoma screening.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.