The Yale Exoplanet Laboratory is under contract to design, build, and deliver a high-resolution (R = 60,000) echelle
spectrograph for the Moletai Astronomical Observatory 1.65-meter telescope at the Vilnius University. We present a
fiber-fed, white-pupil architecture that will operate from 400 to 880nm. The optomechanical design implements a
modular approach for stability and ease of alignment that can be reproduced for other telescopes. It will utilize highperformance
off-the-shelf optical components with a custom designed refractive camera for high throughput and good
image quality.
We describe the design, construction and measured performance of the Kitt Peak Ohio State Multi-Object Spectrograph
(KOSMOS) for the 4-m Mayall telescope and the Cerro Tololo Ohio State Multi-Object Spectrograph (COSMOS) for
the 4-m Blanco telescope. These nearly identical imaging spectrographs are modified versions of the OSMOS
instrument; they provide a pair of new, high-efficiency instruments to the NOAO user community. KOSMOS and
COSMOS may be used for imaging, long-slit, and multi-slit spectroscopy over a 100 square arcminute field of view with
a pixel scale of 0.29 arcseconds. Each contains two VPH grisms that provide R~2500 with a one arcsecond slit and their
wavelengths of peak diffraction efficiency are approximately 510nm and 750nm. Both may also be used with either a
thin, blue-optimized CCD from e2v or a thick, fully depleted, red-optimized CCD from LBNL. These instruments were
developed in response to the ReSTAR process. KOSMOS was commissioned in 2013B and COSMOS was
commissioned in 2014A.
Pushing the RV technique to the precision required to detect Earth-like planets around Solar-type stars requires extreme stability in the wavelength calibrator. We are developing a wavelength calibration technique based on a Fabry-Perot interferometer locked to a stabilized laser. This approach offers advantages over other methods: it produces a broadband, emission comb output from 380-790 nm that is difficult to achieve with a laser frequency comb; by injecting into the science fibers before and after observations, weak signals from velocities in the stellar photosphere that would be masked by iodine reference lines can be now be identified; and by locking the laser to an atomic transition, the spectrum will be stabilized to better than 1 part in 10 e-11, corresponding to a wavelength solution that is known to better than 1 cms-1.
The Multi-Object Double Spectrographs (MODS) are two identical high-throughput optical dichroic-split double-beam
low- to medium-dispersion CCD spectrometers being deployed at the Large Binocular Telescope (LBT). They operate in
the 3200-10500Å range at a nominal resolution of λ/δλ≈2000. MODS1 saw first-light at the LBT in September 2010,
finished primary commissioning in May 2011, and began regular partner science operations in September 2011. MODS2
is being readied for delivery and installation at the end of 2012. This paper describes the on-sky performance of MODS1
and presents highlights from the first year of science operations.
The Ohio State Multi-Object Spectrograph (OSMOS) is a new facility imager and spectrograph for the 2.4m
Hiltner telescope at the MDM Observatory. We present a detailed description of the mechanical and electronic
solutions employed in OSMOS, many of which have been developed and extensively tested in a large number
of instruments built at Ohio State over the past ten years. These solutions include robust aperture wheel and
linear stage designs, mechanism control with MicroLYNX programmable logic controllers, and WAGO fieldbus
I/O modules.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.