K. Chance, X. Liu, C. Chan Miller, G. González Abad, G. Huang, C. Nowlan, A. Souri, R. Suleiman, K. Sun, H. Wang, L. Zhu, P. Zoogman, J. Al-Saadi, J. -C. Antuña-Marrero, J. Carr, R. Chatfield, M. Chin, R. Cohen, D. Edwards, J. Fishman, D. Flittner, J. Geddes, M. Grutter, J. Herman, D. Jacob, S. Janz, J. Joiner, J. Kim, N. Krotkov, B. Lefer, R. Martin, O. Mayol-Bracero, A. Naeger, M. Newchurch, G. Pfister, K. Pickering, R. Pierce, C. Rivera Cárdenas, A. Saiz-Lopez, W. Simpson, E. Spinei, R. J. Spurr, J. Szykman, O. Torres, J. Wang
The NASA/Smithsonian Tropospheric Emissions: Monitoring of Pollution (TEMPO; tempo.si.edu) satellite instrument will measure atmospheric pollution and much more over Greater North America at high temporal resolution (hourly or better in daylight, with selected observations at 10 minute or better sampling) and high spatial resolution (10 km2 at the center of the field of regard). It will measure ozone (O3) profiles (including boundary layer O3), and columns of nitrogen dioxide (NO2), nitrous acid (HNO2), sulfur dioxide (SO2), formaldehyde (H2CO), glyoxal (C2H2O2), water vapor (H2O), bromine oxide (BrO), iodine oxide (IO), chlorine dioxide (OClO), as well as clouds and aerosols, foliage properties, and ultraviolet B (UVB) radiation. The instrument has been delivered and is awaiting spacecraft integration and launch in 2022. This talk describes a selection of TEMPO applications based on the TEMPO Green Paper living document (http://tempo.si.edu/publications.html).
Applications to air quality and health will be summarized. Other applications presented include: biomass burning and O3 production; aerosol products including synergy with GOES infrared measurements; lightning NOx; soil NOx and fertilizer application; crop and forest damage from O3; chlorophyll and primary productivity; foliage studies; halogens in coastal and lake regions; ship tracks and drilling platform plumes; water vapor studies including atmospheric rivers, hurricanes, and corn sweat; volcanic emissions; air pollution and economic evolution; high-resolution pollution versus traffic patterns; tidal effects on estuarine circulation and outflow plumes; air quality response to power blackouts and other exceptional events.
TEMPO was selected in 2012 by NASA as the first Earth Venture Instrument, for launch circa 2018. It will measure atmospheric pollution for greater North America from space using ultraviolet and visible spectroscopy. TEMPO measures from Mexico City to the Canadian tar sands, and from the Atlantic to the Pacific, hourly and at high spatial resolution (~2 km N/S×4.5 km E/W at 36.5°N, 100°W). TEMPO provides a tropospheric measurement suite that includes the key elements of tropospheric air pollution chemistry. Measurements are from geostationary (GEO) orbit, to capture the inherent high variability in the diurnal cycle of emissions and chemistry. The small product spatial footprint resolves pollution sources at sub-urban scale. Together, this temporal and spatial resolution improves emission inventories, monitors population exposure, and enables effective emission-control strategies.
TEMPO takes advantage of a commercial GEO host spacecraft to provide a modest cost mission that measures the spectra required to retrieve O3, NO2, SO2, H2CO, C2H2O2, H2O, aerosols, cloud parameters, and UVB radiation. TEMPO thus measures the major elements, directly or by proxy, in the tropospheric O3 chemistry cycle. Multi-spectral observations provide sensitivity to O3 in the lowermost troposphere, substantially reducing uncertainty in air quality predictions. TEMPO quantifies and tracks the evolution of aerosol loading. It provides near-real-time air quality products that will be made widely, publicly available. TEMPO will launch at a prime time to be the North American component of the global geostationary constellation of pollution monitoring together with European Sentinel-4 and Korean GEMS.
The Ultraviolet Coronagraph Spectrometer (UVCS) on the Solar and Heliospheric Observatory (SOHO) comprises two telescopes and two spectrometer channels for spatially resolved ultraviolet spectral diagnostics of the solar corona. The principal lines for which the two channels are optimized are the H I 'Lyman-(alpha) ' line at 121.5 nm and the O VI (O5+) doublet at 103.2 and 103.7 nm. An 'in-flight' method, using observations of stars and scattered solar disk light, has been devised to determine the flat field function, i.e., the relative detection efficiency of the detector pixels. We present the details and results of this process. Local pixel-to-pixel efficiency variation is found to be, typically, about plus or minus 9% to plus or minus 17% (1 (sigma) ) for the H I Lyman-(alpha) channel and plus or minus 9% for the O VI channel.
The Ultraviolet Coronagraph Spectrometer is one of the instruments on board the Solar and Heliospheric Observatory spacecraft, which was launched in December, 1995. The instrument is designed to make ultraviolet spectrometric measurements and visible polarimetric measurements of the extended solar corona. Prior to launch laboratory measurements were carried out to determine system level values for many of the key performance parameters. Further measurements on instrument performance have been carried out since launch. Presented are descriptions of measurement techniques and representative results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.