A multipurpose fiber-fed double-beam Schmidt spectrograph using VPHG (volume phase holographic gratings) is under construction for LAMOST (The Large Sky Area Multi-Object Fiber Spectroscopic Telescope). There are 16 such spectrographs (hereafter referred to as LRSs) for the project. The spectrographs are designed with wavelength coverage from 370 to 900 nm, with spectral resolutions of 1000-10000, and with multi-object capability over a 5 degrees field of view. Each spectrograph will be accommodating 250 fibers of 320 microns diameter (corresponding 3.3 arcsecs). The 200 mm diameter collimated beam is split into two separate channels. The blue channel is optimized for 370nm-590nm, and the red channel for 570nm-900nm. The LRS can work in several varied resolution modes. The optical design and performance is described. The spectrograph is of simple design with moderate image quality and good throughput. Progress on the construction of LRS is reported as well.
We present an overview of the engineering design of stressed lap developed at Nanjing Institute of Astronomical Optics and Technology. Stressed lap consists of two parts: active deformable lap, driving-adjusting mechanism. The finite element model for active deformable lap is constructed, and the performance of lap deforming is discussed. Descriptions about mechanical structure of driving-adjusting mechanism are given. Now, stressed-lap polishing tool has been used to accomplish a fast parabolic mirror in Nanjing. The φ910mm F/2 parabolic mirror has been figured to an accuracy of 22 nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.