A ultrashort pulse Nd:YAG rod gain medium regenerative amplifier side-pumped by A laser diode array was studied. The SESAM mode locking fiber seed pulses with 10ps pulse duration 1nJ single pulse energy 50 MHz repetition-rate and the wavelength of 1064 nm, was amplified to 1 mJ at 1 kHz by our regenerative amplifier, corresponding to a peak power of 0.1 GW, with the maximum amplification about 3.3×106 . And when the repetition rate changed to 10 kHz, an average power of 6 W was obtained, corresponding to an amplification of 2×106 . The repetition-rate to period doubling of regenerative amplifier pulse was experimentally studied.
The final optics of high-power laser facility are exposed to long-period, high-dose gamma irradiation. Being closest to the target, Borate glass is most affected by the irradiation. Therefore, it is very meaningful to study the effects of gamma irradiation on the optical performance and structural properties of borate glass materials. In this paper, the Co-60 source is used as the irradiation source. The borate glass material made in China is irradiated by different doses of gamma ray. The optical performance test and structural properties test are carried out. The results show that gamma ray irradiation has a great influence on the spectral transmittance and surface structure of borate glass. The research results have some guiding significance for the engineering application of borate materials.
We describe the design and experimental result of a LD pumped Nd:YAG laser with 12J energy at repetition rate of 10Hz. The temperature distribution was controlled to less than 2℃ on the surface by means of uniform pump and cooling. The ASE was calculated by energy storage code and fit well with the measurement results which was about 1.72 in average. The beam quality was controlled by means of mechanical design and adjustment and compensation by a home-made deforming mirror. The far field was measured to 3.23 TDL. The stability of energy and pointing were paid great attention and control by means of full absorption and high stability mechanical design. The energy stability was less than1%(RMS) and pointing stability was 73μrad(PtV), which made the laser very comfortable for use.
A high power, high-repetition picosecond amplifier with an all-fiber picoseconds seed source, Nd:YVO4 and Nd:YAG gain medium was designed and experimentally studied. For a injected seeder laser with a repetition rate of 1 MHz and an average power of 2.34 W, a 55 W laser power output was obtained by the two-stage solid-state amplification, and the measured pulse width was 9.2 ps, and the laser wavelength was 1064.5 nm. The laser output characteristics of different repetitive modes were experimentally studied, and the laser output power was 18.4 W in the (1 × 4) MHz burst mode. Since the spectrum of the fiber picosecond seed light is much larger than the gain spectrum width of the amplifying medium, the output power of the entire system does not reach the design index. Next, the fiber seed source parameters need to be optimized to achieve a larger amplification power output.
The Integration Test Bed (ITB) is a large-aperture single-beam Nd:glass laser system, built to demonstrate the key technology and performance of the laser drivers. The phase II designed output of the ITB at 1053nm is 18.2kJ with the peak power of 3.6TW. So it is important to keep a flat spatial intensity profile at the end of the system to avoid optical elements damage or small-scale self-focusing. Applying the Liquid Crystal Programmable Spatial Shaper (LCPSS) to compensate the beam non-uniformity related to amplification and transmission is an effective way at present. In this paper, we attempt to pre-compensate the beam nonuniformity by the LCPSS. Experiments were carried out to study the spatial fluence modulation and contrast improvement at the main laser output of the ITB laser facility. The results show that the peak-to-average fluence modulation in the near-field is typically 1.35:1; the contrast is about 0.08, at the designed energy and power, which meet the modulation less than 1.4:1 and the contrast under 0.1 design requirement.
An automatic classification method based on machine learning is proposed to distinguish between true and false laser-induced damage in large aperture optics. First, far-field light intensity distributions are calculated via numerical calculations based on both the finite-difference time-domain and the Fourier optical angle spectrum theory for Maxwell’s equations. The feature vectors are presented to describe the possible damage sites, which include true and false damage sites. Finally, a kernel-based extreme learning machine is used for automatic recognition of the true sites and false sites. The method studied in this paper achieves good recognition of false damage, which includes a variety of types, especially attachment-type false damage, which has rarely been studied before.
Optical poling and frequency doubling effect is one of the effective manners to induce second order nonlinearity and realize frequency doubling in glass materials. The classical model believes that an internal electric field is built in glass when it’s exposed by fundamental and frequency-doubled light at the same time, and second order nonlinearity appears as a result of the electric field and the orientation of poles. The process of frequency doubling in glass is quasi phase matched. In this letter, the physical process of poling and doubling process in optical poling and frequency doubling effect is deeply discussed in detail. The magnitude and direction of internal electric field, second order nonlinear coefficient and its components, strength and direction of frequency doubled output signal, quasi phase matched coupled wave equations are given in analytic expression. Model of optical poling and frequency doubling effect which can be quantitatively analyzed are constructed in theory, which set a foundation for intensive study of optical poling and frequency doubling effect.
We presented a novel scheme to improve the stability of the orbital angular momentum (OAM) modes transmission by adding a dip at the edge of the annular high-index region of the air-core fiber. The simulation indicated a larger effective index difference of the vector modes that composed OAM modes in the same order, promising a stable transmission of the OAM modes. The intensity of the modes was concentrated better in this scheme decreasing the crosstalk between adjacent fibers. The propagation properties of the OAM modes in bent fiber were investigated.
Laser Inertial Fusion Energy (IFE) has been attracting the interests of the researchers around the world, because of the promising to the future energy. The Yb:YAG was broadly used in the research field of high-peak power and large energy laser with repetition-rate for IFE because of its outstanding performance, including significant thermal and mechanical capacities, long upper energy level lifetime, high quantum efficiency and highly doping capacity. But it exhibits high saturation fluence at room temperature because of the small emission and absorption cross-section. And at the same time this gain material exhibits self-absorption of laser because of the thermal population at lower laser level at room temperature. Ant it appears to have been solved by means of the cryogenic temperature, but the total efficiency of the laser system will be decreased as the use of cryogenic temperature.
The amplified spontaneous emission (ASE) effect of the amplifier can be relaxed by means of edge-cladded absorption material. And the difficulties of edge cladding can be will solved as the emergence of ceramics. But at present the ceramics exhibits high scattering and many disfigurements, which limited the application in the high-power large-energy laser system. So the edge-cladding of Yb:YAG crystal will be a key issue for solution the ASE in amplifier.
In this paper, we will introduce a 10J water-cooled DPSSL system, based on Yb:YAG crystal at room temperature. In this system a new edge cladding method has been used, that the Yb:YAG crystal was edge cladded by Cr:YAG ceramics, which was used as the absorption material of ASE. The amplifier was an active mirror water-cooled room temperature amplifier. With the help of this edge cladding the ASE has been lowered, and about 5 times small signal gain has been obtained in a single pass amplification, which was much higher than the earlier of 2 times. And the wavefront aberrance of the laser beam was also reduced due to the thermal equilibrium between the edge cladding and the gain region. the amplifiers can be stably operated under 10Hz. Finally the output of the laser system was about 7.15J@10Hz and 10.8J@1-2Hz. The total optical-to-optical efficiency was about 8.3% for 1-2Hz (under the condition of 120kW/1ms pumping, 880mJ input and 10.8J output) and 5.6% for 10Hz.
The laser pulse should be shaped to satisfy the ICF physical requirement and the profile should be flattened to increase the extraction efficiency of the disk amplifiers and to ensure system safety in ICF laser facility. The spatial-temporal distribution of the laser pulse is affected by the gain saturation, uniformity gain profile of the amplifiers, and the frequency conversion process. The pulse spatial-temporal distribution can’t be described by simply analytic expression, so new iteration algorithms are needed. We propose new inversion method and iteration algorithms in this paper. All of these algorithms have been integrated in SG99 software and the validity has been demonstrated. The result could guide the design of the ICF laser facility in the future.
The coherent amplification network (CAN) aims at developing a laser system based on the coherent combination of multiple laser beams, which are produced through a network of high beam quality optical fiber amplifiers. The scalability of the CAN laser facilitates the development of many novel applications, such as fiber-based acceleration, orbital debris removal and inertial confinement fusion energy. According to the requirements of CAN and the front end of high-power laser facilities, a millijoule polarized fiber laser system was studied in this paper. Using polarization maintaining Ytterbium-fiber laser system as the seed, and 10-μm core Yb-doped fiber amplifier as the first power amplifier and 40-μm core polarizing (PZ) photonic crystal fiber (PCF) as the second power amplifier, the all-fiber laser system outputs 1.06-mJ energy at 10 ns and diffraction limited mode quality. Using 85-μm rod-type PCF as the third power amplifiers, 2.5-mJ energy at 10-ns pulse width was obtained with better than 500:1 peak-to-foot pulse shaping ability and fundamental mode beam quality. The energy fluctuation of the system is 1.3% rms with 1-mJ output in one hour. When using phase-modulated pulse as the seed, the frequency modulation to amplitude modulation (FM-to-AM) conversion ratio of the system is better than 5%. This fiber laser system has the advantages of high beam quality, high beam shaping ability, good stability, small volume and free of maintenance, which can be used in many applications.
The grating tiling technology is one of the most effective means to increase the aperture of the gratings. The line-density error (LDE) between sub-gratings will degrade the performance of the tiling gratings, high accuracy measurement and compensation of the LDE are of significance to improve the output pulses characteristics of the tiled-grating compressor. In this paper, the influence of LDE on the output pulses of the tiled-grating compressor is quantitatively analyzed by means of numerical simulation, the output beams drift and output pulses broadening resulting from the LDE are presented. Based on the numerical results we propose a compensation method to reduce the degradations of the tiled grating compressor by applying angular tilt error and longitudinal piston error at the same time. Moreover, a monitoring system is setup to measure the LDE between sub-gratings accurately and the dispersion variation due to the LDE is also demonstrated based on spatial-spectral interference. In this way, we can realize high-accuracy measurement and compensation of the LDE, and this would provide an efficient way to guide the adjustment of the tiling gratings.
In the research of inertial confinement fusion, laser plasma interaction (LPI) is becoming a key problem that affects ignition. Here, multi-frequency modulation (Multi-FM) smoothing by spectral dispersion (SSD), continuous phase plate (CPP) and polarization smoothing (PS) were experimentally studied and equipped on SG-III laser facility. After using these technologies, the focal spots of SG-III laser facility can be adjusted, controlled and repeated accurately. Experiments on SG-III laser facility indicate when the number of color cycles adopts 1, imposing SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and the main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spots using Multi-FM SSD, CPP and PS drops to 0.18, comparing to 0.26 with CPP+SSD, and 0.84 with CPP and wedged lens. Polarization smoothing using flat birefringent plate in the convergent beam of final optics assembly (FOA) was studied.
Time fiducial laser is an important tool for the precise measurement in high energy density physics experiments. The VISAR probe laser is also vital for shock wave diagnostics in ICF experiments. Here, time fiducial laser and VISAR light were generated from one source on SG-III laser facility. After generated from a 1064-nm DFB laser, the laser is modulated by an amplitude modulator driven by 10 GS/s arbitrary waveform generator. Using time division multiplexing technology, the ten-pulse time fiducial laser and the 20-ns VISAR pulse were split by a 1×2 multiplexer and then chosen by two acoustic optic modulators. Using the technique, cost of the system was reduced. The technologies adopted in the system also include pulse polarization stabilization, high precision fiber coupling and energy transmission. The time fiducial laser generated synchronized 12-beam 2ω and 4-beam 3ω laser, providing important reference marks for different detectors and making it convenient for the analysis of diagnostic data. After being amplified by fiber amplifiers and Nd:YAG rod amplifiers, the VISAR laser pulse was frequency-converted to 532-nm pulse by a thermally controlled LBO crystal with final output energy larger than 20 mJ. Finally, the green light was coupled into a 1-mm core diameter, multimode fused silica optical fiber and propagated to the imaging VISAR. The VISAR laser has been used in the VISAR diagnostic physics experiments. Shock wave loading and slowdown processes were measured. Function to measure velocity history of shock wave front movement in different kinds of materials was added to the SG-III laser facility.
Precise physical experiments place strict requirements on target illumination uniformity in Inertial Confinement Fusion. To obtain a smoother focal spot and suppress transverse SBS in large aperture optics, Multi-FM smoothing by spectral dispersion (SSD) was studied combined with continuous phase plate (CPP) and polarization smoothing (PS). New ways of PS are being developed to improve the laser irradiation uniformity and solve LPI problems in indirect-drive laser fusion. The near field and far field properties of beams using polarization smoothing were studied and compared, including birefringent wedge and polarization control array. As more parameters can be manipulated in a combined beam smoothing scheme, quad beam smoothing was also studies. Simulation results indicate through adjusting dispersion directions of one-dimensional (1-D) SSD beams in a quad, two-dimensional SSD can be obtained. Experiments have been done on SG-III laser facility using CPP and Multi-FM SSD. The research provides some theoretical and experimental basis for the application of CPP, SSD and PS on high-power laser facilities.
The paper presents the technical design and progress on a special high-power laser facility, i.e. XG-III, which is being used for high-field physics research and fast ignition research. The laser facility outputs synchronized nanosecond, picosecond and femtosecond beams with three wavelengths, i.e. 527 nm, 1053 nm and 800 nm respectively, and multiple combinations of the beams can be used for physics experiments. The commissioning of the laser facility was completed by the end of 2013. The measurement results show that the main parameters of the three beams are equal to or greater than the designed ones.
Chirp pulse amplification (CPA) has been promoted as an effective way to explore the intensity frontier. High order dispersion induced by the stretcher and materials in the CPA system, which deteriorates both the pulse duration and temporal contrast, however, can not be absolutely compensated by the compressor. Placed at the Fourier plane of a 4f zero-dispersion stretcher consisting of a grating, the deformable mirror (DM) has been demonstrated as the modulator to compensate high order dispersion. Using the method of ray tracing, the relation between spectrum and position on DM has been obtained. It shows that the resolution of the deformable mirror can be controlled by adjusting the focal length and incident angle. We have simulated a typical Ti:sappire CPA system to revise the spectral phase by the DM. The result illustrates that if the spectral phase can be compensated, the temporal contrast will be improved by 2 order of magnitude.
We measured the Raman spectra of the ν1 mode in KDP crystal over the temperature range from 285.3 K to 345.2 K. And the temperature dependence of the Raman characteristics (Raman shift, FWHM and intensity) were well analyzed. The result reveals that with temperature increasing the ν1 mode displays a red-shift and the linewidth broadens, but the scattering intensity shows no obvious tendency. The stimulated Raman scattering (SRS) gain coefficient of the ν1 mode decrease about 12% at 345.2 K.
KEYWORDS: Sensors, High power lasers, Coherent beam combination, Signal detection, Research facilities, Numerical simulations, Beam splitters, Automatic control, Process control, Calibration
Array element tiling is one of the key technologies for the coherent beam combination in a high-power laser facility. In this paper, we proposed a method of the array element auto-tiling based on capacitive displacement sensor. The method was verified on a double-pass tiled-grating compressor in XG-III laser facility. The research showed that the method is an effective way to control the misalignment errors automatically, with high precision and long-term stability.
The singular point of the dissipative soliton mode-locked fiber laser is demonstrated experimentally. Mode-locked pulses are severely disturbed under certain pump power. The peak-valley (P-V) of the output power reaches up to 26.5% under the pump power of 918mW. However, mode-locked fiber laser can operate stably under higher or lower pump power. A numerical model based on nonlinear Schrödinger equation (NLSE) is established. And the singular point of the mode-locked state is theoretically proved.
XG-III laser facility is a petawatt laser which has a unique feature of three synchronized pulses output for various pump-probe experiments. To realize the synchronization with zero timing jitter, we have designed and implemented a novel front-end system based on super-continuum injected femtosecond optical parametric amplification (fs:OPA). Critical parameters of fs:OPA were optimized for the best conversion efficiency. Experimental results verified that major design specifications such as pulse energy, central wavelength and spectral width were fully accomplished and a high pulse contrast ratio was also achieved by the fs:OPA process.
A high average-power all-fiber supercontinuum laser source is constructed. By integrating series techniques together, the output average power achieves 65W with the spectrum range covering two octaves from 540nm to 2200nm. To our knowledge, there has been never reported similar supercontinuum source with such high average power, broadband spectrum and picosecond pulse width.
In a high-energy chirped-pulse-amplified laser system, grating tiling technology provides an effective means to increase the aperture of the gratings and to scale the energy and irradiance of short-pulse lasers. The difficulties lie in controlling tiling errors accurately between the sub-gratings and keeping long time stability. In this paper, a two-pass full-tiled grating-compressor (TGC) with real- time control unit is developed for the first time. The far-field distributions of the 0th order and -1 st order diffracted beams of the two pairs of tiled gratings are monitored by the same CCD system, with the main laser chain being not disturbed. In this way, we realize online real-time control of tiling errors. Through a method of locking the far-field image to compensating the temporal drift, we can realize the automation of the assembly. The TGC has successfully applied in the multi-function XGIII laser facility, and focusing focal spot and output pulse width are obtained.
KEYWORDS: Wavefronts, Adaptive optics, High power lasers, Beam controllers, Control systems, Wavefront distortions, National Ignition Facility, Mirrors, Sensors, Wavefront aberrations
Experiment of entire beam wavefront compensation was carried out in a beamline of a high power laser facility, and two adaptive optics systems with different intentions were applied in the chosen beamline. After correction, the far-filed irradiance distribution is concentrated evidently and the entrance rate of 3ω focal spot to a 500-μm hole is improved to be about 95% under number kilojoules energy.
Multi-FM SSD and CPP was experimentally studied in high fluence and will be equipped on all the beams of SG-III laser facility. The output spectrum of the cascade phase modulators are stable and the residual amplitude modulation is small. FM-to-AM effect caused by free-space propagation after using smoothing by spectral dispersion is theoretically analyzed. Results indicate inserting a dispersion grating in places with larger beam aperture could alleviate the FM-to- AM effect, suggesting minimizing free-space propagation and adopting image relay. Experiments taken on SG-III laser facility indicate when the number of color cycles (Nc) adopts 1, imposing of SSD with 3.3 times diffraction limit (TDL) did not lead to pinhole closure in the spatial filters of the preamplifier and main amplifier with 30-TDL pinhole size. The nonuniformity of the focal spot using Multi-FM SSD and CPP drops to 0.26, comparing to 0.84 only using CPP. The experiments solve some key technical problems using SSD and CPP on SG-III laser facility, and provide a flexible platform for laser-plasma interaction experiments. Combined beam smoothing and polarization smoothing are also analyzed. Simulation results indicate through adjusting dispersion directions of one-dimensional SSD beams in a quad, two-dimensional SSD could be obtained. The near field and far field properties of beams using polarization smoothing were also studied, including birefringent wedge and polarization control plate (PCP). By using PCP, cylindrical vector beams could be obtained. New solutions will be provided to solve the LPI problem encountered in indirect drive laser fusion.
We demonstrate the design and performance of an optical switch that has been constructed for the SG-II upgrading
facility. The device is a longitudinal, potassium di-hydrogen phosphate (KDP), 360 mm×360 mm aperture, and 2×1 array electro-optical switch driven by a 20 kV output switching-voltage pulse generator through two plasma electrodes produced at the rise edge of the switching-voltage pulse. The results show that the temporal responses and the spatial performance of the optical switch fulfill the operation requirements of the SG-II upgrading facility.
KEYWORDS: Optical amplifiers, Spatial filters, Diagnostics, Near field, Frequency conversion, Glasses, Near field optics, Laser systems engineering, Laser applications, Crystals
The Integration Test Bed (ITB) is a large-aperture single-beam Nd:glass laser system, built to demonstrate the
key technology and performance of the laser drivers. It uses two multipass slab amplifiers. There are four
passes through the main amplifier and three passes through the booster amplifier. The output beam size is
360mm by 360mm, at the level of 1% of the top fluence. The designed output energy of ITB at 1053nm is
15kJ in a 5ns flat-in-time (FIT) pulse, the third harmonic conversion efficiency is higher than 70%. The first
phase of the ITB has been completed in July 2013. A series of experiments demonstrated that laser
performance meets or exceeds original design requirements. It has achieved maximum energies at 1053nm of
19.6kJ at 5ns and 21.5kJ at 10ns. Based on a pair of split third harmonic generation KDP crystals, the third
harmonic conversion efficiency of about 70% and 3ω mean fluences as high as 8.4 J/cm2 have been obtained
with 5ns FIT pulse.
SG-III laser facility is now the largest under-construction laser driver for
inertial confinement fusion (ICF) research in China, whose 48 beams will deliver 180kJ/3ns/3ω energy to target in one shot. Till the summer of 2014, 4 bundle of lasers
have finished their engineering installation and testing, and the A1 laser testing is
undergoing. A round of physics experiment is planned in Oct. 2014 with 5 bundle of
lasers, which means the facility must be prepared for a near-full-capability operation
before the last quarter of 2014. This paper will briefly introduce the latest progress of
the engineering and research progress of SG-III laser facility.
The paper presents the development of a sub-petawatt ultrashort laser facility, i.e. the upgraded super intense laser for
experiment on the extremes (SILEX-I). The facility is a multi-stage Ti:sapphire chirped pulse amplification (CPA) laser
system. Cross-polarized wave generation was used to improve the temporal contrast. An adaptive optical system was
utilized to correct wavefront aberrations and to improve focusability before each shot. After upgrading, the maximum
energy is 20.1 J, the recompressed pulse width is 26.8 fs and the peak power is up to 750 TW. The temporal contrast is
around 109. The on-target focal spot size (full width at half maximum (FWHM)) is Φ6.5 μm and the focused intensity is
greater than 4x1020 W/cm2.
optical propagation simulation by SG99 code and invert algorithm has been made for two typical laser architecture,
namely the National Ignition Facility (model A) and SG-III laser facility (model B) based on measured 400mm aperture
Nd:glass slab gain distribution data on ITB system. When the gain nonuniformity is about 5%, 7%, and 9% respectively
within 395x395mm2 aperture and output beam aperture is 360x360mm2, and output energy is about 16kJ/5ns(square)
with B-integral limited, 1ω(1053nm) nearfield modulation is about 1.10, 1.15, and 1.30 respectively for model A (11+7
slab configuration), and 1.07, 1.08, and 1.17 respectively for model B (9+9 slab configuration) without spatial gain
compensation. With the above three gain nonuniformity and slab configuration unchanged, to achieve flat-in-top output
near field, the compensation depth of the input near field is about 1.5:1, 2.0:1, and 6.0:1 respectively for model A, and
1.3:1, 1.4:1, and 3.5:1 respectively for model B. Compared with model A (the beam aperture unchanged in multi-pass
amplification), the influence of slab gain nonuniformity on model B (beam aperture changed) is smaller. All the above
simulation results deserve further experiment study in the future.
The under-construction SG-III laser facility is a huge high power solid laser driver, which contains 48 beams and is
designed to deliver 180kJ energy at 3ns pulse duration. The testing ending up at September 2012 validated that the first
bundle lasers of SG-III facility had achieved all the designed requirements. And shortly later in December 2012, the first
round of running-in physics experiment provided a preliminary X-ray diagnostic result. In the testing experiment,
detailed analysis of the laser energy, the temporal characteristics, the spatial distribution and the focusing performance
was made by using the Beam Integrated Diagnostic System. The 25kJ 3ω energy produced by the first bundle lasers
created the new domestic record in China. These great progresses in the laser performance and the physics experiment
have already demonstrated that the facility is in excellent accordance with the designs, which establish a solid foundation
for completing all the construction goals.
To meet the needs of some physical experiments for high energy short pulse laser, TGC (tiled gratings compressor)
technology and beams-combination technology are required. Progress of TGC and beams-combination at CAEP is
introduced. On TGC technology, interference pattern and far field distribution is used to initially eliminate the tiling
error, and displacement sensor is used as feedback to maintain the posture of the sub-gratings. As for beams-combination
a preliminary method of feedback control in subsections is proposed and will be expected to be used in an integrated test-bed.
KEYWORDS: Tolerancing, Lens design, High power lasers, Solids, Optical design, Optical amplifiers, Optical filters, Telescopes, Near field optics, Electronic filtering
The injection lens of the high power solid laser facility built soon was designed as double
lens. The tolerance of the double lens was analyzed, and the optical performance of which was
detected in experiment.
A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been
designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse
width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd3+:glass lasers which
output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA
pumped by 800nm femtosecond laser and seeded by super-continuum spectrum white light, the three beams are
synchronized with each other without jitter time. By using the seeds from OPA pumped by femtosecond laser, and by
using the pre-amplification stage of OPCPA, the signal to noise ratio of the Nd3+:glass petawatt laser will reach to 108.
Active methods are taken to control the gain narrowing effect of the Nd3+:glass amplifiers, giving the option to compress
the chirped pulse to ultrashort pulse with width less than 400fs. Tiled multilayer dielectric coating gratings are used for
the compressor of the PW beam, which has been successfully demonstrated on a 100J picosecond Nd3+:glass laser
system.
A petawatt laser facility with three beams for fast ignition research and strong-field physics applications has been
designed and is being constructed. The first beam (referred as SILEX-I) is a Ti:sapphire femto-second laser which pulse
width is 30 fs, and till now, output power has reached to 330 TW. The other two beams are Nd3+:glass lasers which
output energy are larger than 1kJ and pulse width are about 1ps and 1ns respectively. By using the technology of OPA
pumped by 800nm femtosecond laser and seeded by super-continuum white light (SWL), the three beams are synchronized with each other without jitter time. Tiled multilayer dielectric coating gratings are used for the compressor of the PW beam.
KEYWORDS: Physics, Sapphire lasers, Optical amplifiers, Laser systems engineering, High power lasers, Laser applications, Solid state lasers, Near field optics, Crystals, Lawrencium
High-power solid-state laser programs at China Academy of Engineering Physics have made great progresses in recent years. A three-stage Ti:sapphire laser system, SILEX-I, was completed early in 2004 which could deliver 26-fs pulses at 5TW, 30TW, and 300TW to the corresponding target chambers for diverse applications. SILEX-I has been working very stably since its completion for experiments, demonstrating that it is the most powerful femtosecond Ti:sapphire laser for exploring strong-field phenomena in the world. The SG-III Nd:glass laser facility has been under conceptual design to meet the requirements from laser fusion applications. The SG-III facility is planned to have sixty-four beamlines divided into eight bundles with an output energy more than 100kJ at 0.35μm for 3- to 5-ns pulses. The eight-beamline TIL (Technical Integration Line), the prototype of the SG-III laser facility, has been installed in the new laboratory in Mianyang. The commissioning experiments have been conducted and one of the eight beams has produced 1-ns pulses of 3.0kJ and 1.2kJ at 1.053μm and 0.35μm, respectively. All the eight beamlines will be activated by the end of 2005 and completed in 2006 for operation. Meanwhile, the eight-beam SG-II laser in Shanghai Institute of Optics and Fine Mechanics has been operated for the experiments since 2001 and an additional beam, built in 2004, has been used for plasma backlighting experiments.
A theoretical analysis is presented for third-harmonic generation (THG) in KDP for type I/ type II angle-detuning scheme of high-intensity laser to produce third harmonic radiation near 0.35μm. The effects of the third-order nonlinear susceptibilities (χ(3) ), transverse walk-off and diffraction, especially, the effects of third-order nonlinearity and the phase variations on the frequency conversion have been discussed. A split-step algorithm based on the Fast Fourier Transform and fourth-order Runge-Kutta integrator is used. The results shown that the third-order nonlinear interactions decreases the tripling efficiency, and increases of the modulate strength of the output intensity of 3ω radiation. However, adjusting the angular detuning can compensate effectively the effects of third- order nonlinearity. Furthermore 3ω conversion efficiency will drop with the increase of the degree of phase variations, and the improve 3ω conversion efficiency can suppress the 3ω wave amplitude ripples.
A Ti:sapphire laser system referred to as SILEX-I with the chirped pulse amplification technology has been built at CAEP which consists of three stages operating at 5TW, 30TW, and 300TW, each having a compressor and target chamber to meet different needs from diverse applications. The first and the second stages work at 10Hz, while the third at single shot. Pulse durations of 26fs have been obtained by installing an acousto-optic programmable dispersive filter (AOPDF) before the stretcher to compensate for the spectral gain narrowing in the regen. By taking a number of advanced measures for spatial beam control, such as spatial beam-shaping, relay-imaged propagation, precise alignment of compressor gratings and OAP, near-diffraction limited focal spots (FWHM) have been obtained. Focused intensities
are measured in the range of (1-5) x 1020W/cm2 with an f/2.2 OAP. The laser system will be able to operate at 500TW and even higher soon. The SILEX-I has been operated for experiments since its completion early in 2004, covering electron and proton acceleration, hot electron production, transport and deposition, neutron production, x-ray radiation, femtosecond laser pulse propagation in air, warm matter, and other strong-field studies. The laser system has shown an excellent stability and reliability and has been the most powerful femtosecond Ti:sapphire laser facility to operate for experiments in recent years.
We demonstrated experimentally the formation of the photorefractive filament array in PDMs by a femtosecond pulse
laser. Using an optical microscopy and a fast CCD camera, we recorded the formation processes. The results showed
that, by special design of the femtosecond laser parameters and the optical configurations, filaments can be placed in an
orderly 1D or 2D arrangement array, and be reflected. Based on these observations, we have established a theoretical
model to simulate the filaments.
Taking into account the effects of third-order nonlinear effects, transverse walk-off and diffraction etc., we have performed theoretical analysis and numerical simulation for third-harmonic generation (THG) in potassium dihydrogen phosphate (KDP). The results show that the efficiency of the THG decreases as the ratio of phase ripples of the input beam increases. The results also indicate that increasing the conversion efficiency of THG can improve the beam quality of the third-harmonic wave.
Considering the fact that holes contained in spatial filters may also serve to isolate ghosts in different areas, we have proposed an optical matrix method for locating the near-axial ghosts in high power laser systems. We also analyze practical criteria for distinguishing real and virtual ghosts. Our model can be used to calculate arbitrary order ghosts of laser amplifier systems.
A peak power of 286-TW Ti:sapphire laser facility referred to as SILEX-I was
successfully built at China Academy of Engineering Physics, for a pulse duration of 30 fs in
a three-stage Ti:sapphire amplifier chain based on chirped-pulse amplification. The beam
have a wavefront distortion of 0.63μm PV and 0.09μm RMS, and the focal spot with an
f/2.2 OAP is 5.7μm, to our knowledge, this is the best far field obtained for high-power
ultra-short pulse laser systems with no deformable mirror wavefront correction. The
peak focused intensity of ~1021W /cm2 were expected.
KEYWORDS: Visualization, Optical amplifiers, Visual analytics, Laser systems engineering, Ray tracing, Complex systems, Optical components, Mirrors, High power lasers, Fusion energy
The technical integration line (TIL), which is the full scale prototype for Shengguang-III laser facility (SG-III), now under construction at CAEP, will contain a neodymium glass laser system with more than 70 large (40-100 cm) optical components. Reflections from these surfaces (so-called ghost reflections) are numerous and extensive computation has been required to track them in the TIL optical system. The tremendous number of ghost paths requires a visualization method that allows overlapping ghosts on optics, and then sums them up to illustrate its potential damage on critical surfaces. Therefore, how to make an effective identification and visualization of multi-order "ghost" has been a major part of the optical design effort. This paper addresses the following aspects of TIL ghost analysis: 1, comparison of several methods for ghost energy simulation. 2, some techniques for visualization of complex optical systems in 3D space including mirrors and pinholes. 3, attempts at visualizing “ghost energy” distribution near some critical surfaces so as to provide detailed references for mitigation of ghost caused damage.
We are now constructing a technical integration experiment line (TIL) at CAEP, which is the prototype facility of Shenguang III laser fusion driver. Currently, many important results have been obtained on the first integrated beam line, which established a sound foundation for Shenguang III engineering design.
A multihundred-terawatt Ti:sapphire laser facility was built at China Academy of Engineering Physics which could deliver femtosecond pulses at three power levels of 5TW, 30TW and hundreds TW to targets. Near-diffraction-limited focal spots were measured and it was found for the first time that alignment errors of grating groove parallelisms in compressors could be the major mechanism for producing elongated far fields. Pulse durations of 35fs were obtained with a Fastlite-produced AOPDF for spectral compensation.
KEYWORDS: Stray light, Diffraction, High power lasers, Laser systems engineering, Reflection, Stray light analysis, Reflectivity, Monte Carlo methods, Optical components, Optical instrument design
Diffraction components are applied in high power laser systems for beam shaping and harmonic separation. Because of the multi-order diffraction and multi-reflection to high power laser, the distributions of stray light energy and ghosts are much more completed in the systems than in conventional optical systems. In this paper a data structure of tree is presented for describing the stray light caused by multi-order diffraction and multi-reflection. All the nodes of the tree can be dynamically saved and be deleted, and the intermediate results those are useful for the next calculation step can be reserved in RAM. Using this method the multiple repeated calculations in conventional stray light analysis methods such as Monte Carlo technique are avoided and the analysis time is reduced. According to the paraxial tracing, the software which can be used for analyzing the stray light caused by multi-order diffraction and multi-reflection in high power laser systems is developed and the stray light tree of a laser system based on paraxial tracing is built. As shown by the example that this algorithm is available for quickly analyzing stray light in the systems including diffraction components, and the ghost positions with energy descriptions can be given by the software. The ghosts those are harmful to the important components will be picked.
A ray tracing software has been developed to allocate the stability requirements of a fusion laser facility. Using the developed software and by establishing a mathematical model of the layout of the fusion laser facility TIL, the task of analyzing the relations between the stability of any individual optical component and the position of the beam foci on the target has been fulfilled. Then, by adding random perturbation to the coordinate parameters of all optical components of the facility and calculating the possibility of the foci to locate in the sphere with radius of 30 μm (the target-shooting requirement of TIL), the stability requirements of the components of the facility has been acquired.
In this paper, based upon the general law oftransmission ofbasic model Gaussian beam, the reflection and refraction of laser at optical surfaces are analyzed respectively. Using the complex parameters of Gaussion beam, a simple algorithm for researching stray light and ghosts caused by Gaussian beam is presented. Depending on the algorithm, a dynamic data structure of tree which can describe the stray light of the system is built, an energy density superposition algorithm based on the distribution of complex amplitude of Gaussian beam is discussed, and a stray light and ghost analysis software for basic model Gaussian beam is developed. It can be seen from given example that the method describes completely the transmission of basic model Gaussian beam in optical systems and the ghost distribution. For given conditions (e.g. the maximum reflection times), the total energy density of Gaussian beam at certain position in optical systems with high accuracy could be calculated.
All of the light that reaches a position other than the intended position is referred as stray light. Stray light generated in multi-pass amplifier system forms a lot of ghost image, which not only seriously influence the laser beam quality and propagation properties, but also damage optical components, and is one of major risks that high power laser system operate regularly. Based on the basic principle of geometrical optics, the transmission of beam is analyzed, a ray tracing method of ghost analysis is mentioned, the mathematical and physical model for analysis of stray light and ghost images has been set up, the analysis software has been presented. Taken a simple system as example, these ghost images and the energy density of key components in the system is get correctly. The results are instructive to the actual work of multi-pass amplifier laser design.
A four pass amplifier system with a small aperture beam reverser has been designed as the main amplifier stage of Technical Integration Line (TIL). TIL is the full scale two- beam prototype for Shenguang-III laser facility which will produce 1 kJ of UV radiation on the target from each beam in 1-3 nanoseconds shaped pulses. The variables were optimized for a fixed output beam aperture of 25 X 25 cm2 and the given parameters of the optical components under the constraints of amplifier gain, fluency damage/filamentation and so on. As a result, the baseline design for TIL was set to a 9-5 configuration.
Technical Integration Line (TIL) is the full scale two-beam prototype for Shenguang-III laser facility. A four pass amplifier system with small aperture beam reverser has been designed as the main amplification stage for TIL, which will produce 1 kJ of UV radiation on the target from each beam in 1-3 nanoseconds shaped pulses. Two schemes were considered in the preliminary design, one of them employed only small aperture Pockels cell in the reverser, and the other used another larger plasma electrode Pockels cell in the main beam line. Simulated by a fast-running lumped-element computer code, the configuration of baseline scheme for TIL was settled. The basic requirements for optical elements were raised during simulation processing.
The spatial filters are used in Technique Integration Line, which has a multi-pass amplifier, not only to suppress parasitic high spatial frequency modes but also to provide places for inserting a light isolator and injecting the seed beam, and to relay image while the beam passes through the amplifiers several times. To fulfill these functions, the parameters of the spatial filters are optimized by calculations and analyzes with the consideration of avoiding the plasma blow-off effect and components demanding by ghost beam focus. The 'ghost beams' are calculated by ray tracing. A software was developed to evaluate the tolerance of the spatial filters and their components, and to align the whole system on computer simultaneously.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.