A novel approach to three-dimensionally (3-D) integrate nanophotonic and electronic devices in silicon is described. The method is based on the SIMOX (Separation by Implantation of OXygen) process, to realize three-dimensionally (3-D) integrated devices in a monolithic fashion. In this approach, photonic and electronic devices are realized on vertically stacked layers of silicon, separated from each other by a dielectric layer of silicon dioxide formed through the process of oxygen implantation. Opto-electronic integration is demonstrated by realizing photonic circuits in a subterranean silicon layer and Metal-Oxide-Semiconductor (MOS) transistors on a surface layer of silicon. Optical and electronic functionalities are thus separated into two different layers of silicon, paving the way towards dense three-dimensional opto-electronic integration. This has the significant advantage that photonic devices do not consume any of the expensive silicon real estate required for CMOS circuitry. The versatility of the technique of SIMOX 3-D sculpting in obtaining complex optical circuitry is also demonstrated by synthesizing a cascaded microdisk structure that may be utilized to tailor the passband characteristics of optical filters.
The integration of photonics and electronics on a single silicon substrate requires technologies that can add optical functionalities without significantly sacrificing valuable wafer area. To this end, we have developed an innovative fabrication process, called SIMOX 3-D Sculpting, that enables monolithic optoelectronic integration in a manner that does not compromise the economics of CMOS manufacturing. In this technique, photonic devices are realized in subsurface
silicon layers that are separated from the surface silicon layer by an intervening SiO2 layer. The surface silicon layer may then be utilized for electronic circuitry. SIMOX 3-D sculpting involves (1) the implantation of oxygen ions into a patterned silicon substrate followed by (2) high temperature anneal to create buried waveguide-based photonic devices. This process has produced subterranean microresonators with unloaded quality factors of 8000 and extinction ratios >20dB. On the surface silicon layers, MOS transistor structures have been fabricated. The small cross-sectional area of the waveguides lends itself to the realization of nonlinear optical devices. We have previously demonstrated spectral broadening and continuum generation in silicon waveguides utilizing Kerr optical nonlinearity. This may be combined with microresonator filters for on-chip supercontiuum generation and spectral carving. The monolithic integration of CMOS circuits and optical modulators with such multi-wavelength sources represent an exciting avenue
for silicon photonics.
Silicon Photonics is emerging as an attractive technology in order to realize low cost, high density integrated optical circuits. Realizing active functionalities in Silicon waveguiding structures is being pursued rigorously. In particular, the Stimulated Raman scattering process has attracted considerably attention for achieving on-chip light generation, amplification and wavelength conversion. This paper reviews some of the recent efforts in using the Raman nonlinear process to realize amplifiers, and lasers. First the prospects of Raman process in realizing high gain amplifiers are discussed theoretically. Following this experimental results on amplification with gains as high as 20dB are presented. Some of the recent results in realizing pulsed and CW lasers with reverse-biased carrier sweep out are presented. The paper is concluded by highlighting some of the applications of the Raman process in Silicon in realizing mid-IR sources and also the use of SiGe as a flexible Raman medium are discussed.
Although the Raman effect is nearly two orders of magnitude stronger than the electronic Kerr nonlinearity in silicon, under pulsed operation regime where the pulse width is shorter than the phonon response time, Raman effect is suppressed and Kerr nonlinearity dominates. Continuum generation, made possible by the non-resonant Kerr nonlinearity, offers a technologically and economically appealing path to WDM communication at the inter-chip or intra-chip levels. We have studied this phenomenon experimentally and theoretically. Experimentally, a 2 fold spectral broadening is obtained by launching ~4ps optical pulses with 2.2GW/cm2 peak power into a conventional silicon waveguide. Theoretical calculations, that include the effect of two-photon-absorption, free carrier absorption and refractive index change indicate that up to >30 times spectral broadening is achievable in an optimized device. The broadening is due to self phase modulation and saturates due to two photon absorption. Additionally, we find that free carrier dynamics also contributes to the spectral broadening and cause the overall spectrum to be asymmetric with respect to the pump wavelength.
A new process has been developed to create vertically-integrated photonic and optoelectronic circuits in silicon. The approach is the 3-D extension of the SIMOX process where buried SiO2 sections can be selectively created by using oxygen implantation, through a mask, followed by annealing. By controlling the implant energy, dose, mask area and thickness, arbitrary 3-D arrangements of Silicon/SiO2 can be created. The process has been used to create vertically coupled microdisk resonators and add-drop wavelength multiplexers on a silicon wafer.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.