The integration of autonomous wireless elements in health monitoring network increases the reliability by suppressing
power supplies and data transmission wiring. Micro-power piezoelectric generators are an attractive alternative to
primary batteries which are limited by a finite amount of energy, a limited capacity retention and a short shelf life (few
years). Our goal is to implement such an energy harvesting system for powering a single AWT (Autonomous Wireless
Transmitter) using our SSH (Synchronized Switch Harvesting) method. Based on a non linear process of the
piezoelement voltage, this SSH method optimizes the energy extraction from the mechanical vibrations.
This AWT has two main functions : The generation of an identifier code by RF transmission to the central receiver and
the Lamb wave generation for the health monitoring of the host structure. A damage index is derived from the variation
between the transmitted wave spectrum and a reference spectrum.
The same piezoelements are used for the energy harvesting function and the Lamb wave generation, thus reducing mass
and cost. A micro-controller drives the energy balance and synchronizes the functions. Such an autonomous transmitter
has been evaluated on a 300x50x2 mm3 composite cantilever beam. Four 33x11x0.3 mm3 piezoelements are used for the
energy harvesting and for the wave lamb generation. A piezoelectric sensor is placed at the free end of the beam to track
the transmitted Lamb wave.
In this configuration, the needed energy for the RF emission is 0.1 mJ for a 1 byte-information and the Lamb wave
emission requires less than 0.1mJ. The AWT can harvested an energy quantity of approximately 20 mJ (for a 1.5 Mpa
lateral stress) with a 470 μF storage capacitor. This corresponds to a power density near to 6mW/cm3.
The experimental AWT energy abilities are presented and the damage detection process is discussed. Finally, some
envisaged solutions are introduced for the implementation of the required data processing into an autonomous wireless
receiver, in terms of reduction of the energy and memory costs.
The health state of a structure depends on both the degradation of its mechanical properties during its life cycle (ageing) and to the presence of localised defects such as corrosion, cracks, or delaminations. We already described1-3 a method enabling the recovery of both kinds of information, and based upon a piezoelectric disk attached to the plate-like composite structure. The element dimensions are chosen in order to uncouple the frequency ranges of its thickness and radial vibration modes. The thickness mode is then exploited to monitor the homogeneous ageing of the structure through electrical impedance measurement. Whereas the radial vibrations, are used to launch and detect Lamb waves, which are known to propagate over long distances. The present work focuses more particularly on the reliability of the technique. The definition of a very simple "damage index" computed from the experimental data is proposed and its high sensitivity is discussed. A finite element model of real and hence complex damages is used in order to understand the interaction of the selected Lamb waves with the defects. A good agreement between the experimental observations and the simulations is found. The sensitivity of a given guided mode to a given type of damage can then be understood and then a predictive implementation of the experimental device can be envisaged.
The DAMASCOS (DAMage Assessment in Smart COmposite Structures) project is a European Union funded program of work bringing together a number of academic and industrial partners throughout Europe. The aim of Damascos is to apply new ultrasonic detection and generation techniques integrated within the structure, together with advanced signal processing to realize damage assessment and ageing characterization in composite structures. This paper describes the background, experimental findings and future applications of the technology as the project moves into its final phase.
The health of a structure depends on both the homogeneously distributed degradation of its mechanical properties during its life cycle and the presence of localised defects such as cracks or delaminations. The proposed non-destructive health monitoring method allows to recover both kinds of information using ultrasonic waves. To avoid traditional techniques limitations, such as coupling reproducibility for instance, we propose here to integrate a piezoelectric element into the plate-like composite structure. The element dimensions are determined in order to uncouple the frequency ranges of the thickness and radial vibration modes. The thickness mode is used to monitor the homogeneous ageing of the structure through electrical impedance measurement. As for the radial vibrations, they are used to generate and detect Lamb waves, which have the advantage of propagating over long distances and offering specific sensitivity of various modes to different kinds of defects. The present work focuses on this last application and studies the ability of the proposed technique to detect and identify defects such as low speed impact-induced delaminations and cracks incomposite plate-like structures.
As a technique of diagnosing failure in structures and systems, the method of novelty detection shows considerable merit. The basis of the approach is simple: given measured data from normal condition of the structure, the diagnostic system builds an internal representation of the system normal condition in such a way that subsequent departures from this condition can be identified with confidence in a robust manner. The success or failure of the method is contingent on the accuracy of the description of normal condition. In many cases, the normal condition data may have quite a complex structure: for example, an aircraft may experience a wide range of ambient temperatures in the course of a single flight. Also, the operational loads experienced by the craft as a result of flight manoeuvres may have wide-ranging effects on the measured states. The object of the current paper is to explore the normal condition space for a simple benchmark monitoring system. The said system uses Lamb-wave inspection to diagnose damage in a composite plate. Both short-term and long-term experiments are carried out in order to examine the variations in normal condition as a result of run-in of the instrumentation and variations in ambient temperature. The exercise is not purely academic as the fiber-optic monitoring system is a serious candidate for a practical diagnostic system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.