Light-sheet microscopy (LSM) has emerged as the technique of choice for many biologists imaging large cleared tissues due to its speed and optical efficiency, which make it possible to generate massive datasets of large specimens at high resolution. Here, we build on several recent innovations in LSM to present a non-orthogonal dual-objective (NODO) LSM system with axial sweeping in an open-top configuration. This system is specifically designed to image large cleared brain tissues, such as for axonal connectomics, and provides subcellular resolution (0.3 µm lateral, 2 µm axial) of large cleared samples up to 8 mm thick.
Lattice light-sheet (LLS) microscopy provides ultrathin light sheets of a two-dimensional optical lattice that allows us imaging three-dimensional (3D) objects for hundreds of time points at sub-second intervals and at or below the diffraction limit. Galectin-3 (Gal3), a carbohydrate-binding protein, triggers glycosphingolipid (GSL)-dependent biogenesis of morphologically distinct endocytic vesicles that are cargo specific and clathrin independent. In this study, we apply LLS microscopy to study the dynamics of Gal3 dependent endocytosis in live T cells. This will allow us to observe Gal3-mediated endocytosis at high temporal and excellent 3D spatial resolution, which may shed light on our understanding of the mechanism and physiological function of Gal3-induced endocytosis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.