Night vision equipment is crucial in order to accomplish supremacy and safety of the troops on the battlefield. Evidently, system integrators, ministry of defenses and end-users need access to reliable quantitative characterization of the expected field performance when using night vision equipment. The image intensifier tube is one of the most important engines driving the performance for night vision equipment. As a major tube manufacturer, Photonis investigates the link between its products’ physical design parameters and the actual end-user field performance. The developments include (1) an end-to-end performance measurement method and test facility, (2) an image-based night vision simulation, and (3) a range estimation model. The purpose is twofold: (1) being able to support the need of the integrators and end-users and (2) further systematic improvement of night vision equipment design. For the end-to-end test, Photonis and TNO cooperated in the implementation of the triangle orientation discrimination (TOD) test for night vision equipment. This test provides a clear and rigorous ranking of the products with respect to their target acquisition performance level. We present the Photonis night vision test laboratory, provide TOD results for a set of night vision devices, and show range prediction examples.
KEYWORDS: Night vision, Signal to noise ratio, Target acquisition, Lawrencium, Visualization, Sensors, Image intensifiers, Modulation transfer functions, Manufacturing, Performance modeling
Night vision equipment is crucial in order to accomplish supremacy and safety of the troops on the battlefield. Evidently, system integrators, MODs and end-users need access to reliable quantitative characterization of the expected field performance when using night vision equipment. The Image Intensifier tube is one of the most important engines driving the performance for night vision equipment. As a major tube manufacturer, PHOTONIS has investigated the link between its products physical design parameters and the actual end-user field performance. The developments include 1) an end-to-end performance measurement method and test facility, 2) an image-based night vision simulation and 3) a range estimation model. The purpose is twofold: i) being able to support the need of the integrators and end users, and ii) further systematic improvement of night vision equipment design. For the end-to-end test, PHOTONIS and TNO cooperated in the implementation of the TOD (Triangle Orientation Discrimination) test for night vision equipment. This test provides a clear and rigorous ranking of the products with respect to their target acquisition performance level. With respect to the image-based simulation, PHOTONIS performs physical and performance comparisons between artificial and real imagery, promising exciting further development of a model based on the merging of the different approaches of night vision evaluation and modelling. In this paper, we present the PHOTONIS night vision test laboratory, provide TOD results for a set of night vision devices and show range prediction examples.
High quality night vision digital video is nowadays required for many observation, surveillance and targeting
applications, including several of the current soldier modernization programs. We present the performance increase that
is obtained when combining a state-of-the-art image intensifier with a low power consumption CMOS image sensor.
Based on the content of the video signal, the gating and gain of the image intensifier are optimized for best SNR. The
options of the interface with a separate laser in the application for range gated imaging are discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.