Repair or reconstruction of organs is the goal of regenerative medicine. Bioengineered organoids that can differentiate when implanted in-vivo to partially restore organ function are being developed. Potentially, such organoids can be used to treat many medical conditions. A non-invasive method for quality monitoring of tissue engineered constructs is needed in order to ensure that they are ready for implantation. Raman micro-spectroscopy offers a way to quantitatively analyze cells and tissues without sample preparation or labelling dyes, which are not allowed in constructs used for the human implantation. Epithelial progenitor cells are parts of the complex organoids derived from the embryonic salivary gland cells. We have collected Raman spectra of the epithelial (acinar and ductal) cells treated with Fibroblast Growth Factor 2 (FGF2) and grown in organoids ex vivo over a period of (1 - 7 days). Evolution of the organoids over time was detected with Raman. These modifications, corresponding to the C-C stretch and C-H bend in proteins, as well as alterations in the Amide I and III envelopes, likely may correlate with changes in the cell environment or their differentiation state. Our goal is to develop Raman metrics that can be applied to the non-invasive monitoring of organoids.
Regenerative medicine encompasses the rebuilding or repairing of organs. We are developing bioengineered organoids that will differentiate when implanted in vivo to partially restore organ function. These complex organoids, derived from embryonic salivary gland cells, include both primary mesenchyme and epithelial progenitor cells. Noninvasive quality monitoring of tissue-engineered constructs is required before implantation of bioengineered constructs in vivo. Raman spectroscopy offers fast, simple, and, most importantly, non-invasive quantitative cell and tissue analysis that does not require elaborate sample preparation. We demonstrate the application of Raman micro-spectroscopy technique to in vitro monitoring of cell types within 3D cell clusters, with the ultimate goal of applying this technology in situ to monitor adult cell-derived organoids that are implanted in vivo. We have collected Raman spectra of epithelial and mesenchymal progenitor cells in vitro, and have shown that we are able to identify different Raman signatures corresponding to each cell type. In particular, we have observed Raman spectral differences which correspond to the C-C and C-N stretch in proteins, as well as in the Amide I and III envelopes. The embryonic mesenchyme cells are similar to mesenchymal stem cells, MSCs, which can differentiate into bone, cartilage, and other cell types. In addition to salivary gland tissue engineering applications, mesenchymal cells offer a great potential in repairing bone, cartilage, and damaged heart cells, and to treat inflammation and immune system diseases. In future studies, our Raman spectroscopy methods can be broadly applied to monitoring of organoids for application in many diseases.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.