In this paper, we consider change detection in the longwave infrared (LWIR) domain. Because thermal emission is the dominant radiation source in this domain, differences in temperature may appear as material changes and introduce false alarms in change imagery. Existing methods, such as temperature-emissivity separation and alpha residuals, attempt to extract temperature-independent LWIR spectral information. However, both methods remain susceptible to residual temperature effects which degrade change detection performance. Here, we develop temperature-robust versions of these algorithms that project the spectra into approximately temperatureinvariant subspaces. The complete error covariance matrix for each method is also derived so that Mahalanobis distance may be used to quantify spectral differences in the temperature-invariant domain. Examples using synthetic and measured data demonstrate substantial performance improvement relative to the baseline algorithms.
In this paper, we develop and evaluate change detection algorithms for longwave infrared (LWIR) hyperspectral imagery. Because measured radiance in the LWIR domain depends on unknown surface temperature, care must be taken to prevent false alarms resulting from in-scene temperature differences that appear as material changes. We consider two strategies to mitigate this effect. In the first, pre-processing via traditional temperature-emissivity separation (TES) yields approximately temperature-invariant emissivity vectors for use in change detection. In the second, we adopt a minimax approach that minimizes the maximal spectral deviation between measurements. While more computationally demanding, the second approach eliminates spectral density assumptions in traditional TES and provides superior change detection performance. Examples on synthetic and measured data quantify computational complexity and detection performance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.