We study efficiency of intensity-based dynamic speckle method for characterization of dynamic events which occur at variable rate in time within the temporal averaging interval. We checked the ability of the method to describe the speed of evolution by i) numerical simulation at variable speed, ii) processing of speckle patterns obtained from phase distributions fed to a SLM at controllable change of the temporal correlation radius of speckle intensity fluctuations and iii) conducting experiments with a polymer solution drying by using a hot-stage. The numerical and SLM simulation experiments allowed for modification of the used estimates in order to obtain relevant information.
Industrial inspection of processes by capture of speckle patterns often requires detection of a small activity area buried in a background. This work presents analysis of sensitivity of the dynamic speckle method by processing simulated and experimental correlated in time 8 bit encoded speckle patterns. Simulation of the patterns was done for an exponentially decreasing temporal correlation function of intensity fluctuations by Fresnel propagation of a monochromatic wave reflected from a delta-correlated in time phase screen and captured at different diameters and focal distances of the optical sensor objective lens. For the experiment, we used a 3D printed flat object with hollow sections that was covered with a transparent film and a droplet of a polymer solution and monitored the process of their drying. Both normalized and non-normalized processing algorithms were used.
In this paper we analyze the optical response of azopolymer (poly[1-[4-(3-carboxy-4-hydroxyphenylazo) benzenesulfonamido] -1,2-ethan-ediyl, sodium salt]), shortly denoted as PAZO. The photoinduced birefringence of this material has a potential for polarization holographic recording. We consider thin PAZO layers with embedded TiO2 spherical particles. This is a numeric simulation motivated by the search of photoinduced birefringence enhancement in azopolymer layers. The scattering of a single particle in the dye-polymer matrix is calculated using the exact vector Maxwell equations. The particles are treated as ensemble of non-aggregated spheres with normal distribution of sizes, characterized by the mean radius <r< and standard deviation σ = <r>/4. Multiple scattering by individual particles is ignored. The refractive index of the PAZO matrix at 442 nm has a complex value (due to absorption) as we have determined it from experimental spectrophotometric data. The 442 nm wavelength is commonly used for recording polarization holographic gratings in azopolymer materials. Embedded TiO2 spheres with mean radius from 10 to 80 nm are considered. The angular dependences of all the scattering matrix elements, which describe the optical response of the composite layers, are estimated.
Non-destructive detection of physical or biological activity through statistical processing of speckle patterns on the
surface of diffusely reflecting objects is an area of active research. A lot of pointwise intensity-based algorithms have
been proposed over the recent years. Efficiency of these algorithms is deteriorated by the signal-dependent speckle data,
non-uniform illumination or varying reflectivity across the object, especially when the number of the acquired speckle
patterns is limited. Pointwise processing of a sequence of 2D images is also time-consuming. In this paper, we propose to
transform the acquired speckle images into binary patterns by using for a sign threshold the mean intensity value
estimated at each spatial point from the temporal sequence of intensities at this point. Activity is characterized by the 2D
distribution of a temporal polar correlation function estimated at a given time lag from the binary patterns. Processing of
synthetic and experimental data confirmed that the algorithm provided correct activity determination with the same
accuracy as the temporal normalized correlation function. It is efficient without the necessity to apply normalization at
non-uniform distribution of intensity in the illuminating laser beam and offers acceleration of computation.
Azopolymers are well known organic materials for polarization holographic recording due to the induced anisotropy under illumination with polarized light. They possess all the desirable characteristics of the known polarization-sensitive materials, as high sensitivity and reversibility, but excel them substantially in the magnitude of the photoinduced birefringence. This makes possible to record reversible polarization gratings with high diffraction efficiency.
In this paper results of experimental investigations on the reversibility properties of birefringence photoinduced in azopolymers are reported, depending on the conditions of subsequent optical and thermal treatment. Thin films of different polymers were prepared in order to examine the kinetics of multiple recording and erasure of birefringence in different types of azopolymers. The reversibility of the polarization recording has been studied using two different method of erasure – by increased temperature and on illumination with circularly polarized light.
Dynamic laser speckle analysis is non-destructive detection of physical or biological activity through statistical processing of speckle patterns on the surface of diffusely reflecting objects. This method is sensitive to microscopic changes of the surface over time and needs simple optical means. Advances in computers and 2D optical sensors forced development of pointwise algorithms. They rely on acquisition of a temporal sequence of correlated speckle images and generate activity data as a 2D spatial contour map of the estimate of a given statistical parameter. The most widely used pointwise estimates are the intensity-based estimates which compose each map entry from a time sequence of intensity values taken at one and the same pixel in the acquired speckle images. Accuracy of the pointwise approach is strongly affected by the signal-dependent nature of the speckle data when the spread of intensity fluctuations depends on the intensity itself. The latter leads to erroneous activity determination at non-uniform distribution of intensity in the laser beam for the non-normalized estimates. Normalization of the estimates, introduces errors. We propose to apply binarization to the acquired speckle images by comparing the intensity values in the temporal sequence for a given spatial point to the mean intensity value estimated for this point and to evaluate a polar correlation function. Efficiency of this new processing algorithm is checked both by simulation and experiment.
Holography is defined as a two-steps process of capture and reconstruction of the light wavefront scattered from three-dimensional (3D) objects. Capture of the wavefront is possible due to encoding of both amplitude and phase in the hologram as a result of interference of the light beam coming from the object and mutually coherent reference beam. Three-dimensional imaging provided by holography motivates development of digital holographic imaging methods based on computer generation of holograms as a holographic display or a holographic printer. The holographic printing technique relies on combining digital 3D object representation and encoding of the holographic data with recording of analog white light viewable reflection holograms. The paper considers 3D contents generation for a holographic stereogram printer and a wavefront printer as a means of analogue recording of specific artifacts which are complicated objects with regards to conventional analog holography restrictions.
Azopolymers are one of the most efficient types of media for recording the polarization state of light. An essential optical parameter to characterize them is the value of the birefringence Δn induced on illumination with polarized light. Laser beam is used as a pump and the birefringence is commonly probed by another laser with wavelength, different from the pump one. However, data about the spectral behavior of Δn are given rarely.
In this work we present experimental data for the dynamics of spectra of birefringence during illumination with pump lasers with wavelengths varying from 355 nm to 514 nm i.e. from the peak of absorbance to the edge of the absorbance band of the azopolymer used. Furthermore, we investigate the influence of nanoparticles from zinc oxide (ZnO) with different concentrations, incorporated in the azopolymer. The azopolymer used for this study is the water soluble poly[1- [4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt], shortly denoted as PAZO. As indicated by our experiments, thin films from this azopolymer can be used for polarization diffractive elements, operating in the entire visible range of the spectrum.
In this article we present a study of the photoinduced birefringence (Δn) in films of a water soluble azopolymer: poly[1- [4-(3-carboxy-4-hydroxyphenylazo)benzenesulfonamido]-1,2-ethanediyl, sodium salt] (PAZO). Varying the concentration of the azopolymer in the solution, films with wide range of thicknesses are obtained – from 50 to 2500 nm. The film thickness is determined with a Talystep precision profilometer. Birefringence is measured using a polarimetric setup with a recording laser at 473 nm and probe He-Ne laser at 633 nm. As shown experimentally, the maximal photoinduced birefringence (Δnmax) does not depend on the thickness and is of the order of 0.07 for all of the investigated samples. The recording time however considerably increases for films thicker than 500 nm.
The phenomenon of dynamic speckle is used for non-invasive whole-field detection and visualization of physical or biological activity in various objects through statistical description of laser speckle dynamics. Usage of 2D optical sensors to capture sequences of correlated 2D speckle patterns allows for building a pointwise estimate of a given statistical measure which should give a quantitative high contrast detailed 2D map of the spatial distribution of activity across the object surface. The aim of the present paper is to find out an effective way to enhance visualization of the activity map obtained by the normalized correlation-based algorithms. Similar to all processing algorithms, the built estimates exhibit strong fluctuations from point to point due to speckle nature of the acquired patterns. The fluctuations decrease the contrast of the built 2D activity map and worsen sensitivity and resolution of the dynamic speckle method. As a first task, we studied the distributions of the built estimates by processing of synthetic speckle patterns. As a second task, we applied smoothing to the activity map to achieve enhanced visualization. As a third task we considered building a map of a parameter related to the correlation radius of the temporal correlation function of the processes undergoing within the sample. The results are verified both by simulation and experiment.
The phenomenon of dynamic speckle allows for non-invasive whole-field detection of physical or biological activity in objects through statistical description of laser speckle dynamics. Effective way to improve the statistical analysis is generation of controlled speckle patterns. SLM implementation of an optical simulator of dynamic speckle patterns is proposed by feeding a correlated sequence of 2D random phase distributions to the phase-only SLM. Atthevarying in space correlation radius of the phase fluctuations in the successive frames, the SLM produces regions of different activity on a screen under laser illumination. Feasibility of the proposed approach is proved both by simulation and experiment.
Pattern projection profilometry is a powerful tool to reconstruct three-dimensional (3D) surface of diffuse objects. A
variety of pattern projection methods for 3D capture of objects is based on the generation of sinusoidal fringes. A
sinusoidal phase grating under divergent coherent illumination with a point source produces high visibility and high
spectral purity sinusoidal fringes in a large longitudinal region. In the present work we study the speckle suppression in
the fringes by using a polychromatic light source. Such an approach makes use of the fact that the lateral fringe spacing
does not depend on the wavelength of the illuminating light. The wavelength has an impact on the locations and the
number of the Talbot planes, where self-imaging of the grating occurs, and on variation of the contrast and the frequency
content of fringes along the distance from the grating. We analyze the multi-wavelength illumination of the grating by
solving the Fresnel diffraction integral for a point source illumination in paraxial approximation. We verified the
obtained results by experiments with a thin holographic grating recorded on a silver-halide holographic plate under
illumination with a laser diode operating in single mode and multimode regimes.
In this paper we present a study of the photoinduced anisotropy in novel nanocomposite films of azopolymers doped with ZnO nanoparticles with different sizes – 50 and 100 nm. The photoresponse was evaluated by classical polarimetric setup with two crossed polarizers, recording laser with wavelength 473 nm and probe He-Ne laser. Our experimental results indicate that doping with both 50 and 100 nm sized particles improves the response time, however the smaller size nanoparticles provide increase of Δnmax with up to 40%, as the 100 nm particles reduce the saturated value of the birefringence, due to the higher scattering.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.