We perform measurement of photoacoustic (PA) signals for burned skin in rats in the spectral range of 500 to 650 nm. The wavelength dependence of PA signal amplitude shows characteristics similar to those of the absorption spectrum of hemoglobin, suggesting that the PA signal originates from blood in the uninjured skin tissue under the injured tissue layer. High-contrast signals are obtained in the spectral range of 532 to 580 nm. At 550 nm, a PA detector is scanned on the wounds and PA tomograms are obtained. The tomograms clearly show the zones of stasis, demonstrating that a 2-D PA measurement is useful for burn depth assessment.
We previously proposed a new method for monitoring adhesion of skin graft by measuring photoacoustic (PA) signal originated from the neovascularities. In this study, immunohistochemical staining (IHC) with CD31 antibody was performed for grafted skin tissue to observe neovascularity, and the results were compared with PA signals. We also used a laser Doppler imaging (LDI) to observe blood flow in the grafted skin, and sensitivity of PA measurement and that of LDI were compared. In rat autograft models, PA signals were measured for the grafted skin at postgrafting times of 0-48 h. At 6 h postgrafting, PA signal was observed in the skin depth region of 500-600 mm, while the results of IHC showed that angiogenesis occurred at the depth of about 600 mm. Depths at which PA signal and angiogenesis were observed decreased with postgrafting time. These indicate that the PA signal observed at 6 h postgrafting originated from the neovascularities in the skin graft. Results of LDI showed no blood-originated signal before 48 h postgrafting. These findings suggest that PA measurement is effective in monitoring the adhesion of skin graft in early stage after transplantation.
Adhesion monitoring of grafted skins is very important in successful treatment of severe burns and traumas. However, current diagnosis of skin grafting is usually done by visual observation, which is not reliable and gives no quantitative information on the skin graft adhesion. When the grafted skin adheres well, neovascularities will be generated in the grafted skin tissue, and therefore adhesion may be monitored by detecting the neovascularities. In this study, we attempted to measure photoacoustic signals originate from the neovascularities by irradiating the grafted skins with 532-nm nanosecond light pulses in rat autograft and allograft models. The measurement showed that immediately after skin grafting, photoacoustic signal originate from the blood in the dermis was negligibly small, while 6 - 24 hours after skin grafting, signal was observed from the dermis in the graft. We did not observe a significant difference between the signals from the autograft and the allograft models. These results indicate that neovascularization would take place within 6 hours after skin grafting, and the rejection reaction would make little effect on adhesion within early hours after grafting.
We previously reported that for rat burn models, deep dermal burns and deep burns can be well differentiated by measuring the propagation time of the photoacoustic signals originated from the blood in the healthy skin tissue under the damaged tissue layer. However, the diagnosis was based on point measurement in the wound, and therefore site-dependent information on the injuries was not obtained; such information is very important for diagnosis of extended burns. In the present study, we scanned a photoacoustic detector on the wound and constructed two-dimensional (2-D) images of the blood-originated photoacoustic signals for superficial dermal burns (SDB), deep dermal burns (DDB), deep burns (DB), and healthy skins (control) in rats. For each burn model, site-dependent variation of the signal was observed; the variation probably reflects the distribution of blood vessels in the skin tissue. In spite of the variation, clear differentiation was obtained between SDB, DDB, and DB from the 2D images. The images were constructed as a function of post burn time. Temporal signal variation will be also presented.
This paper reports the burn diagnosis that is based on the measurement of photoacoustic waves from skin, where the acoustic waves originate from the absorption of light by blood. For this purpose, a transducer composed of a ring-shaped piezoelectric film and a quartz fiber was made. An optical parametric oscillator (500 - 650 nm) was used as a light source and its output pulses were coupled to the quartz fiber. To investigate the optimum light wavelength, we conducted experiments using rat burn models. We demonstrated that the superficial dermal burn (SDB), deep dermal burn (DDB), deep burn (DB), and control (healthy skin) could be clearly differentiated based on the photoacoustic signals induced by the light of 532 - 580nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.