With the introduction of high-numerical aperture extreme ultraviolet lithography, the thickness of layers in the lithographic stack will scale owing to reduced depth of focus and etch budget. While several studies have explored the impact of thickness scaling on photoresists, the consequence of thinning down underlayers for extreme ultraviolet (EUV) lithography has been scarcely investigated. In this work we assessed the readiness of nine state-of-the-art underlayers, spin-on and dry deposited, scaled in thickness series down to 4 nm nominal (~3 nm actual). Dose-to-size and exposure latitude changed by less than 5 % when thickness of underlayer was decreased. In summary, most of EUV underlayers investigated in this work showed minimal impact on the physical and chemical properties as well as the patterning performance when scaling in view of high numerical aperture extreme ultraviolet lithography.
With the introduction of high-numerical aperture (NA) extreme ultraviolet (EUV) lithography, the thickness of layers in the lithographic stack will scale owing to reduced depth of focus and etch budget. The consequence of thinning down underlayers for EUV lithography has been scarcely investigated. In here, we assessed the readiness of nine state-of-the-art underlayers, spin-on and dry deposited, in thickness series down to 4 nm nominal. Preliminarily, the coating quality of these underlayers was evaluated. Thickness uniformity across 300 mm wafer ranged from about ±0.5 nm to < ± 0.05 nm depending on the coating technique employed. Surface roughness of the underlayers varied from as much as 0.63 nm to as low as 0.062 nm but was not impacted by thickness scaling. Film density and total surface energy varied by <10 % with thickness. EUV lithography of dense lines/spaces arrays of pitch 28 nm was carried out using a positive tone chemically amplified photoresist. Dose-to-size and exposure latitude changed by < ± 5 % when thickness of underlayer was decreased. Failure free process was at most 1 nm smaller for thinner underlayer than it was for the thinnest version of each type. The unbiased linewidth roughness increased consistently but limitedly (<5 % ) when thinner underlayers were used, mainly due to a reduction in the correlation length. By calculating the power spectral density of the blanket underlayer we can pinpoint this effect to a reduction of correlation length of the underlayer own surface roughness. Finally, Z-factor calculations demonstrated that overall photoresist performance depended more significantly on the specific underlayer type (±12.6 % ) than it did on underlayer thickness (±8 % ). All these results indicate that most of underlayers investigated had limited impact on the properties as well as the patterning performance when scaling in view of high NA EUV.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.