KEYWORDS: Digital imaging, Live cell imaging, Numerical simulations, Microscopy, Real time imaging, Phase retrieval, Microscopes, Image retrieval, Phase imaging, Digital image correlation
As an ideal way for quantitative live cell imaging, dual view transport of intensity equation (TIE) method can provide both real time imaging, multi-mode observations, simple setup and large field of view (FoV). However, the image recorder installation error reduces the accuracy in both amplitude and phase retrievals, because of the inevitable FoV mismatch between the captured under- and over-focus intensities. In order to obtain higher accuracy amplitude and phase retrievals, the phase correlation based digital FoV correction is introduced into our method, rotation, scale and translation between the under- and over-focus images are compensated by the phase correlation based digital FoV correction. Measurements are implemented using standard sample detection and quantitative live cell imaging, proving that the proposed method can improve the accurate of the amplitude and phase computations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.