Color image demosaicking is a key process in the digital imaging pipeline. In this paper, we present a rigorous
treatment of a classical demosaicking algorithm based on alternating projections (AP). Since its publication, the
AP algorithm has been wildly cited and served as a benchmark in a flurry of papers in the demosaicking literature.
Despite its impressive performances, a relative weakness of the AP algorithm is its high computational complexity.
In our work, we provide a rigorous analysis of the convergence of the AP algorithm based on the concept of
contraction mapping. Furthermore, we propose an efficient noniterative implementation of the AP algorithm in
the polyphase domain. Numerical experiments show that the proposed noniterative implementation achieves the
same results obtained by the original AP algorithm at convergence, but is about an order of magnitude faster
than the latter.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.