With a particular function in plate-type structure tomography, computed laminography (CL) has received increasing attention in industrial nondestructive testing and become an important branch of computed tomography (CT). For the reconstruction algorithm of CL, center of rotation (COR) is the most important parameter determining the reconstruction accuracy and must be located precisely. Otherwise, even a tiny error of COR will cause obvious artifacts in reconstructed images. In order to realize measurement of COR with high accuracy and efficiency, a feasible calibration method was proposed to determine the position of COR without dedicated phantoms. According to this method, when a sample fixed on the rotational stage turns around the rotational axis, the locus of the sample’s projection on the imaging plane will be an ellipse. Consistent with the symmetrical property of an elliptical image, a cross-correlation operation is adopted to determine the position of COR by locating the peak value of the cross-correlation function. The computer simulation and experimental results demonstrate that this method has high accuracy, and strong anti-noise and anti-wobble ability. In particular, this method does not need a dedicated phantom to perform the calibration, but rather uses projections of the inspected sample to calculate COR directly.
For multilayer printed circuit board (PCB) and large-scale integrated circuit (LIC) chips, nondestructive testing of the inner structure and welding defects is very important for circuit diagram reverse design and manufacturing quality control. The traditional nondestructive testing of this kind of plate-like object is digital radiography (DR), which can provide only images with overlapped information, so it is difficult to get a full and accurate circuit image of every layer and the position of the defects using the DR method. At the same time, traditional computed tomography scanning methods are also unable to resolve this problem. A new reconstruction method is proposed for the nondestructive testing of plate-like objects. With this method, x rays irradiate the surface of the reconstructed object at an oblique angle, and a series of projection images are obtained while the object is rotating. Then, through a relevant preprocessing method on the projections and a special reconstructing algorithm, cross sections of the scanning region are finally obtained slice by slice. The experimental results prove that this method satisfactorily addresses the challenges of nondestructive testing of plate-like objects such as PCB or LIC.
KEYWORDS: X-rays, X-ray imaging, Imaging systems, Image quality, Nonuniformity corrections, Image intensifiers, Real time imaging, Sensors, Signal to noise ratio, Multichannel imaging systems
For the X-ray real time imaging system base on image intensifier, the non-uniformity response among each pixel channel
can not be ignored, which cause the fixed pattern noise and degrade the image quality obviously. In order to correct the
non-uniformity response, a logarithm response model is created to fit the output-input characteristic curve of each pixel
channel, then the correction coefficient table is obtained to make each pixel channel has the same response sensitivity. In
practical application, the un-corrected image is divided by the correction coefficient table to get rid of the fixed pattern
noise. The experimental results prove that the algorithm has an efficiency of real time correction and the corrected image
quality can be increased effectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.