The European X-Ray Free Electron Laser (EuXFEL) is a unique facility that provides femtosecond x-ray pulses of high pulse energy at MHz repetition rate. However, the high peak power results in a high dynamical heat load in the optical components, like monochromators, which reduces the intensity of the transmitted pulses significantly as compared to the full capacity of the EuXFEL source. To address these challenges at the high photon energy instruments of EuXFEL, we propose a diamond channel cut monochromator as an alternative to the standard Si monochromators. Diamond has a lower absorption cross-section at high photon energies and a higher thermal conductivity compared to Si, making diamond a promising candidate for x-ray optics applications under high heat load conditions. Here, we present a finite element model (FEM) of the temperature increase in diamond and the resulting thermal expansion to estimate the changes in the diffraction profile and the expected monochromator transmission depending on the number of pulses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.