In conventional CT, it is difficult to generate consistent organ specific noise and resolution with a single reconstruction kernel. Therefore, it is necessary in principle to reconstruct a single scan multiple times using different kernels in order to obtain clinical diagnosis information for different anatomies. In this paper, we provide a deep learning solution which can obtain organ specific noise and resolution balance with one single reconstruction. We propose image reconstruction using a deep convolution neural network (DCNN) trained by a specific feature aware reconstruction target. It integrates desirable features from multiple reconstructions each of which provides optimal noise and resolution tradeoff for one specific anatomy. The performance of our proposed method has been verified with actual clinical data. The results show that our method can outperform standard model based iterative reconstruction (MBIR) by offering consistent noise and resolution properties across different organs using only one single image reconstruction.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.