AIMSTM is mainly used in photomask industry for verifying the print impact of mask defects on wafer CD in DUV lithography process. AIMS verification is typically used in D2D configuration, wherein two AIMS images, reference and defect, are captured and compared. Criticality of defects is then analyzed off these images using a number of criteria. As photomasks with aggressive OPC, sub-resolution assist features (SRAFs), and single-die are being routinely manufactured in production environment, it is required to improve cycle time through the AIMS step by saving time in searching for and capturing an adequate reference AIMS image. One solution is to use AIMS D2DB methodology which compares AIMS defect image with a reference image simulated from the corresponding mask design data. In general, such simulation needs calibration with the native images captured on the AIMS tool. In our previous paper we evaluated a calibration procedure directly using the defect AIMS image and compared the analysis results with a D2D capture using AIA (Aerial Image Analyzer) software product from Luminescent Technologies (now part of KLA-Tencor Corporation). The results showed that calibration using defect AIMS image does not influence AIMS judgment as long as the defect size is less than 100nm in case of typical basic patterns. When applying this methodology to product patterns, it was found that there were differences between reference AIMS image and simulation image. These differences influenced AIMS verification. Then new method to compensate would be needed. Our approach to compensate the difference between AIMS image and simulated image is examination with some factors likely to cause the difference.
AIMS™ is mainly used in photomask industry for verifying the impact of mask defects on wafer CD in DUV lithography process. AIMS verification is used for D2D configuration, where two AIMS images, reference and defect, are captured and compared. Criticality of defects is identified using a number of criteria. As photomasks with aggressive OPC and sub-resolution assist features (SRAFs) are manufactured in production environment, it is required to save time for identifying reference pattern and capturing the AIMS image from the mask. If it is a single die mask, such technology is truly not applicable. A solution is to use AIMS die-to-database (D2DB) methodology which compares AIMS defect image with simulated reference image from mask design data. In general, simulation needs calibration with AIMS images. Because there is the difference between an AIMS image except a defect and a reference image, the difference must be compensated. When it is successfully compensated, AIMS D2DB doesn’t need any reference images, but requires some AIMS images for calibration. Our approach to AIMS D2DB without calibration image is systematic comparison of several AIMS images and to fix optical condition parameters for reducing calibration time. And we tried to calibrate using defect AIMS image to this approach. In this paper, we discuss performance of AIMS D2DB simulation without calibration images.
EUVL mask process of absorber layer, buffer layer dry etching and defect repair were evaluated. TaGeN and Cr were selected for absorber layer and buffer layer, respectively. These absorber layer and buffer layer were coated on 6025 Qz substrate. Two dry etching processes were evaluated for absorber layer etching. One is CF4 plasma process and the other is Cl2 plasma process. Etch bias uniformity, selectivity, cross section profile and resist damage were evaluated for each process. Disadvantage of CF4 plasma process is low resist selectivity and Cl2 plasma process is low Cr selectivity. CF4 plasma process caused small absorber layer damage on isolate line and Cl2 plasma process caused Cr buffer layer damage. To minimize these damages overetch time was evaluated. Buffer layer process was also evaluated. Buffer layer process causes capping layer damage. Therefore, etching time was optimized. FIB-GAE and AFM machining were applied for absorber layer repair test. XeF2 gas was used for FIB-GAE. Good selectivity between absorber layer and buffer layer was obtained using XeF2 gas. However, XeF2 gas causes side etching of TaGeN layer. AFM machining repair technique was demonstrated for TaGeN layer repair.
EUVL mask process of absorber layer dry etching and defect repair were evaluated. TaGeN and Cr were selected for absorber layer and buffer layer, respectively. These absorber layer and buffer layer were coated on 6025 Qz substrate. Two dry etching processes were evaluated for absorber layer etching. One is CF4 gas process and the other is Cl2 gas process. CD uniformity, selectivity, cross section profile and resist damage were evaluated for each process. FIB-GAE and AFM machining were applied for absorber layer repair test. XeF2 gas was used for FIB-GAE. Good selectivity between absorber layer and buffer layer was obtained using XeF2 gas. However, XeF2 gas causes side etching of TaGeN layer. AFM machining repair technique was demonstrated for TaGeN layer repair.
Recently, a new attenuating phase shift film utilizing a bilayer of SiON film and TaHf alloy film was developed for F2 and high transmission ArF lithography. Basic data, showing their optical properties, chemical durability, and dry-etch performance was introduced during the Photomask Japan 2003. Currently a lot of lithographers are paying their attention on this new material, because of its capability for high transmission ArF, as one of the solution for 65nm node with 193nm extension. As it is becoming more and more recognized by both mask manufacturers and mask users, repair capability of the film material has a great impact on the mask yield, which determines the potential cost and cycle time of the photomask. In this paper, we investigated the capability of this material on critical mask repair, focusing on high transmission and attenuating ternary PSM. We evaluated the repair capability with currently used FIB tools. This new material shows excellent repair capability because of the bilayer structure, where the Ta-Hf film, which was initially designed as a transmission control layer and as an etch stop for the SiON etch, works as a stopper during the FIB repair process assisted by β gas. We also report preliminary test results with the nanomachining repair system RAVE.
The SIR5000 mask repair system was developed with an FIB system featuring new ion optics, modified SED detectors, new platform software and optimized repair processes to repair 130nm/ArF generation masks. Thereafter we have continuously improved it for 90nm/ArF lithography and evaluated its performance such as edge placement repeatability, lithography simulation and printing tests.
The transmittance of FIB imaging area is more than 95% over 70 times scans, and the printing result data also shows that the imaging damage by FIB scans little affect CD until around 70 times. The ED windows of both repaired clear and opaque defects almost overlap non repaired reference ones, and they show that the printing performance of repaired mask does not have any printing issues. Consequently, we demonstrated that the improved SIR5000 capability has reached the 90nm node mask technology requirement.
Nanomachining is a new technique for repairing photomask defects. The advantages of this technique are no substrate damage, precise edge placement position and Z height accuracy when compared with current Laser zapper or FIB GAE repair techniques. We have reported that this technique can be applied to any type of opaque film material defects, quartz bump defects on Alternating Aperture Phase Sifting Masks (AAPSM) and complex pattern defect repairs. In this report, we have evaluated about the optimization of Nanomachining condition for repairing most advanced photomasks for 193nm lithography on the materials of binary chrome and MoSi HT-PSM. Evaluation items are adequate edge position and Z height for targeting to achieve better printing performance when analyzed with an AIMS 193nm tool.
Nanomachining is a new technique for repairing photomask defects. The advantages of this technique are no substrate damage, precise edge placement position and Z height accuracy when compared with current Laser zapper or FIB GAE repair techniques. This technique can be applied to any type of opaque defects at any type of film materials and quartz bump defects on Alternating Aperture Phase Sifting Masks (AAPSM). Furthermore, these characteristics enable complex pattern repairs of most advanced photomasks for 193nm lithography and enables iterative repair to achieve improved printing performance when analyzed with an AIMS 193nm tool. Dai Nippon Printing Co., Ltd. (DNP) has been producing AAPSMs in mass production for quite some time. The standard type of AAPSMs manufactured has been etched quartz, single trench with an undercut structure. On this structure, there is a potential for quartz defects underneath the chrome overhang based on the combination of dry and wet etching to create the undercut. For this study, we fabricated this kind of designed quartz defects and repaired them using the nanomachining system. These types of defects are particularly difficult to repair perfectly because they exist underneath the chrome overhang. We will show some options to achieve better printing results through the repair of these kinds of defects.
In this report, we confirmed basic performance of this technique such as edge placement accuracy, Z height accuracy and AIMS printability. Additionally, we also tried to repair some complex defects such as quartz defects of AAPSM, quartz defects of CPL mask and oversized Serifs for application options. We will show these nanomachining repairs with evaluation results of printing performance simulated by the AIMS 193nm tool.
Photomask is a key factor to support the lithography technology. Defect repairing technology has become more important than ever to keeping the photomasks' integrity in the manufacturing processes. The SIR5000 is a photomask defect repair system for ArF/90 nm generation lithography. In this work, the repaired masks by the SIR5000 were evaluated by an Aerial Imaging Microscope System (AIMS) and Atomic Force Microscope (AFM). These test results do not show actual printing condition on wafer, but rather a simulated lithography image. In this paper, we present the imaging damage, the edge placement repeatability, the repair area's transmission and the printing performance on wafer. An ArF scanner was employed for the tests on the imaging damage and the printing performance. The transmission of imaged area is more than 95% after 70 scanning frames. The edge placement has shown the 90 nm node repair capability. The transmission of repaired area is no issue by AIMS193 analysis. The actual printing result on wafer has shown there is no printing issue. The SIR5000 is well suited for ArF generation lithography.
For alternating aperture phase shift masks (AAPSM), phase-defect detection and disposition is more difficult for 193 nm (ArF) lithography than for 248 nm (KrF) lithography, as pattern geometry is tighter and quartz etching is shallower. For ArF lithography, we designed and fabricated a new test mask to confirm detectability and printability of phase defects, extending our previous work for KrF lithography. This test mask has precise defect sizes and phase-error angles of 25, 50, and 75 degrees. Detectability was demonstrated on KLA-Tencor’s SLF27 and investigated by acquiring defect images on SLF27 and LaserTec’s MD3000 inspection systems. Printability was compared between actual wafer prints, and simulations from Carl Zeiss’ Aerial Image Measurement System (AIMS). Wafer prints were also simulated using Numerical Technologies’ software-based Virtual Stepper System, which takes inspection images as input and models the optical aspects of lithography. Virtual Stepper critical-dimension measurements show good general agreement with those from AIMS images and wafer-print SEM images. Compared to AIMS, which is a hardware-based simulator that uses the actual mask as input, the software-based Virtual Stepper System is easier to adapt to different processes and to integrate into the production flow.
HT-PSMs (Half Tone Phase Shifting Masks) are well known as one of the key technologies to obtain high resolution and expand process window of lithography. And furthermore, high transmission HT-PSMs are expected to show better DOF and MEEF than conventional transmission, such as 6%, HT-PSM.
We have already developed and reported TaSiOx shifter as a high transmission HT material for ArF lithography. And also we have reported its process performance such as good phase controllability, vertical side-wall angle, no damage on quartz surface during shifter dry etching and good CD uniformity. The key point to obtain these performances is the characteristics of etching stop function of its bi-layered structure. This bi-layered structure also enabled transmission at the inspection wavelength to keep enough low to inspect by current inspection systems.
In this report, in order to confirm the feasibility of mass-manufacturing of the TaSiOx high transmission HT-PSM, we fabricated programmed defect test mask and performed following experiments. Defect detectability was evaluated by KLA-Tencor SLF27 and compared to printability results that were confirmed by ZEISS MSM193. We will also show some preliminarily results of repairing tests on this TaSiOx material.
The satisfactory data have been confirmed on the photomask repairing performance for 100nm-node/ArF-generation lithography with the model SIR5000 photomask repair system. In this report, the repairing ability is presented with transmittance and edge placement data. The edge placement was almost 15nm(3sigma) on binary and MoSi-HT masks, and there isn’t any transmittance loss in the AIMS193 data.
Alternating phase-shifting mask (Alt.PSM) technology is the most effective approach to expand resolution limitation and expand the process window of lithography. Currently, etched quartz Alt.PSMs have been introduced not only for device development but also for production use. We have been supplying Alt.PSMs with Single trench + Undercut structures for the mass-production of KrF lithography and reported this structure is applicable for ArF lithography. (*1,2,3) On the other hand, we have introduced preliminary manufacturing results of the new Alt.PSM structure. (*3) This structure has the advantages, which are exempted from biasing issues and narrow chrome width limitations. (*4) In order to make sure the adaptability of this new Alt.PSM structure in mass-manufacturing, we started to investigate productivity for this structure. In this report, we will discuss about the feasibility study of manufacturing process and quality control which include CD performance results, alignment error tolerance evaluations and defect assurance evaluations.
In this paper, we demonstrate new simulation capabilities for defect dispositioning of alternating aperture phase shift masks (AAPSM). A defect mask for use in a 248 nm exposure tool was fabricated with programmed phase defects. Inspection images of the defects were taken on Lasertec's MD3000 and KLA-Tencor's SLF27 inspection systems. The simulation tool takes defect images as input and simulates photolithography performance via aerial image modeling. We present preliminary modeling results that show good agreement between simulated CDs and the CDs from Aerial Image Measurement System (AIMSTM) measurements. This work shows the potential for extending Virtual Stepper?System to AAPSMs on a variety of inspection platforms.
Alternating phase-shifting mask (Alt.PSM) technology is the most effective approach to expand resolution limitation and expand the process window of lithography. Currently, etched quartz Alt.PSMs have been introduced not only for device development but also for production use. We have been supplying Alt.PSMs with Single trench + Undercut structures for the mass-production of KrF lithography and reported this structure is applicable for ArF lithography. On the other hand, we have introduced preliminary manufacturing results of the new Alt.PSM structure. This structure has the advantages, which are exempted from biasing issues and narrow chrome width limitations. In order to make sure the adaptability of this new Alt.PSM structure in mass-manufacturing, we started to investigate productivity for this structure. In this paper, we will discuss about the feasibility study of manufacturing process and quality control which include CD performance results, alignment error tolerance evaluations and defect assurance evaluations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.