III-V compound multi-junction (MJ) solar cells have great potential for space and terrestrial applications because they have high efficiency potential of more than 50% and superior radiation-resistance. Recently, more than 40% efficiency cells were reported by Fraunhofer ISE, Spectrolab, Sharp and others. Concentrator 4-junction or 5-junction solar cells have great potential for realizing super high-efficiency of over 50%. In order to realize super high-efficiency of more than 50%, it is substantially important to understand and reduce several losses of solar cells. This paper reviews loss mechanism for III-V compound solar cells and MJ solar cells. In addition, recent results under the EU-Japan Collaborative Research on Concentrator Photovoltaics are also presented. The conversion efficiency of inverted epitaxially grown InGaP/GaAs/InGaAs triple-junction solar cells has been improved to 37.9% (1-sun, AM1.5G) and 44.4% (250- 300 suns) as a result of proposing double-hetero structure wide-band-gap tunnel junctions, and inverted epitaxial growth.
While single-junction solar cells may be capable of attaining AM1.5 efficiencies of up to 29%, multi-junction (MJ,
Tandem) III-V compound solar cells appear capable of realistic efficiencies of up to 50% and are promising for space
and terrestrial applications. In fact, the InGaP/GaAs/Ge triple-junction solar cells have been widely used for space since
1997. In addition, industrialization of concentrator solar cell modules using III-V compound MJ solar cells have been
announced by some companies. This paper presents principles and key issues for realizing high-efficiency MJ solar cells,
issues relating to development and manufacturing, and applications for space and terrestrial uses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.