In this paper, we propose to use an inverse-based method that is implemented by a Genetic algorithm (GA) for
obtaining the strain and temperature profiles in a 10-mm fiber Bragg grating (FBG) sensor and a series set of ten 10-mm sensors. The changes of strain and temperatures are analyzed by utilizing the sensitivity of the refractive index
and grating period of the fiber Bragg grating sensor. This can be accomplished by reconstructing the FBG structural
shape by using a Genetic algorithm that is compared with the measured output data. Our ultimate objective for
utilizing these results are intended for real-time sensing of strain and temperature of these sensors which are ideally
suited for smart structures health monitoring and diagnostics applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.