Agilent Technologies Inc.is a global leader in life sciences, diagnostics and applied chemical markets. Now in its 20th year delivering insight and innovation toward improving the quality of life, Agilent instruments, software, services, solutions and people provide trusted answers to customers' most challenging questions. The company generated revenues of $5.16 billion in fiscal 2019 and employs 16,300 people worldwide. The company's stock is traded on the New York Stock Exchange under the ticker symbol "A." www.agilent.com
A diffraction grating is found at the heart of every modern spectrophotometer and yet, despite being used for over 60 years, a practical and efficient characterization tool has proven to be elusive. Part of the challenge can be attributed to the unique angular dependent geometry, or off axis dispersion, of gratings. Here we demonstrate automated grating efficiency measurements of four reflection gratings (300, 1200, 1800 and 3600 grooves per mm). Total measurement time was less than 2 hrs at a maximum of 161 wavelengths per grating. This approach can reduce test times or assist expand quality assurance, or design verification, programs. Automated measurements are performed in hours demonstrating efficiency and ease-of-use advantages when compared to equivalent manually operated systems.
Automated spectroscopic profiling (mapping) of a 200 mm diameter near infrared high reflector (centered at 1064 nm) are presented. Spatial resolution at 5 mm or less was achieved using a 5 mm × 1.5 mm monochromatic beam. Reflection changes of 1.0% across the wafer diameter were observed under s-polarized and p- polarized conditions. Redundancy was established for each chord by re-measuring the center of the wafer and reproducibility of approximately <0.1% was demonstrated by duplicate measurements. These measurements demonstrate informative spatial spectroscopic information can be obtained on large diameter samples. Multi-angle Photometric Spectroscopy (MPS) was used to measure the reflectance and transmittance of a sample across a range of angles (θi) at near normal angles of incidence (AOI). A recent development by Agilent Technologies, the Cary 7000 Universal Measurement Spectrophotometer (UMS) combines both reflection and transmission measurements from the same patch of a sample’s surface in a single automated platform for angles of incidence in the range 5°≤|θi|≤85° (i.e. angles on either side of beam normal noted as +/-). We describe the use of MPS on the Cary 7000 UMS with rotational (Φ) and vertical (z) sample positioning control. MPS(θi,Φ,z) provides for automated unattended multi-angle R/T analysis of at 200 mm diameter samples with the goal to provide better spectroscopic measurement feedback into large wafer manufacturing to ensure yields are maximized, product quality is better controlled and waste is reduced before further down-stream processing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.