The concept of quantum nanolaminates (QNL) postulates the decoupling of band gap and refractive index, which in regular dielectric materials is linked. We will show that the quantization effect can be observed in nanolaminate structures of the material combinations Ta2O5-SiO2 and amorphous silicon-SiO2, which were deposited by magnetron sputter deposition. These nanolaminates were characterized by a variety of different methods, which confirmed the layer structure in the nanometer range and the shift of the absorption edge to shorter wavelength. Furthermore, the use of the QNL as the high refractive index material in optical interference coatings was successfully demonstrated in anti-reflection and long pass filter coatings.
Quantization effects in nanolaminate structures of oxide materials were proposed and experimentally demonstrated only recently. In this paper we will investigate the material combinations of Ta2O5-SiO2 and amorphous silicon-SiO2 deposited by magnetron sputtering and show that the quantization effect is observed in both materials. We will describe the deposition process and demonstrate the tunability of the refractive index and the bandgap energy. Quantized nanolaminates (QNL) composed of Ta2O5-SiO2 in combination with SiO2 were used as high and low refractive materials in optical interference coatings forming an antireflection and a mirror coating, whereas QNL with aSi-SiO2 as the high index material were used in a log pass filter with edge at 720nm. All designs could be deposited successfully with close match to the design. The aSi-SiO2 based filter showed a blocking range throughout the visible spectrum whereas a comparable filter based on SiO2-TiO2 only blocked 500-700nm.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.