The growing prevalence of digital technologies has led to increased data generation so that new storage technologies must be developed to handle expanding capacity demand. Holographic data storage is a very promising candidate with the potential to provide ultra-high density data storage. Currently, many teams are developing holographic storage technology, with much of the emphasis on professional archival applications. However, consumer-oriented applications are also growing rapidly and the requirements for these applications are different from those for professional archival storage. In particular, a holographic medium for consumer applications must be simple, cheap, and easy to process. In addition, where content distribution is the intended application, the medium must also be compatible with mastering and replication processes. We present a new holographic medium designed to meet the requirements of consumer oriented applications. The media is based on thermoplastic materials that are modified by the inclusion of photo-chemically active dyes. A series of 0.6 and 1.2 mm thick discs were injection molded and characterized for holographic storage capacity and sensitivity. The first series of samples showed large refractive index modulations of 0.03 but a poor sensitivity of 0.1 cm/J. Analysis of the data showed that the low sensitivity limited the usable capacity of the media to M/# values of ~1. A new series of dyes were synthesized with optimized efficiency and injection molded in 1.2 mm substrates. These substrates demonstrated comparable usable capacity but with significantly increased sensitivities. The results of the measurements of the injection-molded thermoplastic media are presented.
A new holographic data storage material based on narrow-band absorption is currently being developed at General Electric. Experimental characterization results of the preliminary materials are presented.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.