In this research, we presents a novel design for an all-electrical single photon emitter that utilizes a single electron pump and a lateral p-n junction based on an AlGaAs/GaAs heterostructure. The fundamental promise of single photon emission is achieved by injecting one and only one electron into the p-n junction, where one photon is generated after e-h radiative recombination. This ensures an intrinsically on-demand and deterministic single photon source. Up to GHz repetition rate is expected given the single electron pump has demonstrated quantized generation of electrons in the GHz range. We will present some promising stable EL emission after overcoming the charge accumulation problem in our dopant-free architecture.
High quality, controlled-structure nanowires (NWs), grown on a transparent flexible substrate, have attracted great
interest as a mean of harvesting solar and mechanical energy. Clarifying their optical and piezoelectric properties is
essential for this application. In this paper, vertically aligned lithium (Li) doped p-type ZnO NWs were grown, on a
micro-patterned transparent flexible polyethylene naphthalate (PEN) substrate, by electrochemical deposition at 88 °C.
The substrate was coated with aluminum-doped ZnO (AZO) thin layer, which served as a good seed layer and a
transparent conductive oxide layer. Varying the seed layer thickness gave control of the individual NWs’ diameter,
density and alignment. The effect of doping on the optical band-gap, crystalline quality and Schottky barrier were
investigated by X-ray diffraction (XRD) spectroscopy and piezoelectric characterization. The piezoelectric polarization
induced piezo-potential in strained ZnO NWs can drive the flow of electrons without an applied electric bias, thus can be
used to harvest mechanical energy and convert it into electricity. To prove this concept, flexible piezoelectric energy
harvesters based on an array of ZnO NWs were fabricated. Results show that the patterned p-type NW-based energy
harvester produces 26-fold output voltage and 19-fold current compared to the conventional un-doped ZnO NW energy
harvester from the same acceleration input.
An ultrahigh resolution spectral domain optical coherence tomography (SD-OCT) system is used to observe for the first time in vivo the early effect of sodium iodate (NaIO 3 ) toxicity on retinal morphology. Retinal degeneration is induced in rats via tail vein injection of NaIO 3 and structural changes in the outer retina are assessed longitudinally at baseline and 1, 2, 3, 6, 8, and 10 h, and 12 post drug administration with OCT, H&E histology, and IgG immunochemistry. Disruption of the structural integrity and changes in the optical reflectivity of the photoreceptor inner (IS) and outer segment (OS) layers are observed as early as 1 h post NaIO 3 injection. A new layer is observed in the OCT tomograms to form between the retinal pigmented epithelium and the photoreceptors OS a few hours post NaIO 3 injection. The dynamics and the low optical reflectivity of this layer, as well as cell swelling and disruption of the blood-retina barrier observed in the histological and immunohistochemistry cross-sections suggest that the layer corresponds to temporary fluid accumulation in the retina. Results from this study demonstrate the effectiveness of OCT technology for monitoring dynamic changes in the retinal morphology and provide better understanding of the early stages of outer retina degeneration induced by NaIO 3 toxicity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.