Silicon Pore Optics is the optic technology selected for the production of the hundreds of mirror modules that will comprise the European Space Agency’s NewAthena X-ray mirror assembly. Each mirror module starts from pristine silicon wafers that are taken through many physical, mechanical and chemical steps to produce the about 160 individual mirror plates that are needed for its construction. At each step in the production chain, data are used to tune the details of each process, and new data are collected to assess the quality of the output. In this paper we describe how the different pieces of data that become available during the production of the optics are brought together in a system of data bases and software pipelines that is meant to serve both the scientific and the production quality needs associated with such a large effort. A few examples will be described to illustrate the current status of these efforts.
The European Space Agency (ESA), cosine and its partners have been developing for 20 years the Silicon Pore Optics (SPO) technology. SPO enables the next generation of space x-ray telescopes, with increased sensitivity and resolution. NewAthena, the New Advanced Telescope for High Energy Astrophysics, has just been endorsed by ESA as one of its Lclass mission, to launch around 2037. NewAthena’s optic is modular and consists of up to 600 mirror modules that form together a ~2.5 m diameter X-ray mirror with a focal length of 12 m and an angular resolution of 9 arc-seconds half-energy width. The total polished mirror surface is ~300 m2, which will focus X-rays with an energy of about 0.3 – 10 keV onto two detectors, a wild-field imager (WFI) and an imaging spectrometer (XIFU). Building hundreds of such SPO mirror modules in a cost-efficient and timely manner is a formidable task and subject of a dedicated ESA technology development program.
We present in this paper the status of the optics production and illustrate not only recent X-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
The ALBA Synchrotron (Barcelona, Spain) has built MINERVA a new X-ray facility designed to support the development of the NewATHENA mission (Advanced Telescope for High Energy Astrophysics), whose objective is to observe and study energetic objects in space (accretion disk around black holes, large-scale structure, etc...). MINERVA is dedicated to assemble stacks manufactured by cosine into mirror modules (MM), building blocks of the NewATHENA optics. This new beamline is originally based on the X-ray parallel beam facility XPBF 2.0 at the Physikalisch-Technische Bundesanstalt (PTB at BESSY II) but also includes additional features on the scanning scheme to improve the characterization time of each MM produced. Interoperability between MINERVA and XPBF 2.0 is nonetheless preserved to boost the mass production of the MMs and characterize their performance. MINERVA is now in operation and has been funded by the European Space Agency (ESA) and the Spanish Ministry of Science and Innovation.
The case of a Laue lens providing effective area in the energy band 60 keV to 150 keV is investigated. The goal is to establish whether this type of optics could be used to extend polarimetric study of celestial sources beyond the energy range enabled by current-generation grazing incidence mirrors, with a focal length compatible with sub-orbital missions. The Laue lens considered is based on Silicon Laue components (SiLC), which makes use of Silicon Pore Optics technology heritage. A SiLC is a stack of thin crystalline silicon wedged plates that are curved in two directions to provide both radial and azimuthal focusing. SiLC technology is presented and the potential performance of a SiLC lens designed for 8 m focal length is investigated.
Silicon Pore Optics (SPO) have been invented and developed to enable x-ray optics for space applications that require a combination of high angular resolution while being light-weight to allow achieving a large mirror surface area. In 2005, the SPO technology development was initiated by the European Space Agency (ESA) for a flagship x-ray telescope mission and is currently being planned as a baseline for the NewATHENA mission scheduled for launch in the 2030s. Its more than 2m diameter mirror will be segmented and comprises of 492 individual Silicon Pore Optics (SPO) grazing-angle imagers, called mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of primary-secondary mirror pairs, each mirror made of silicon, coated to increase the collective area of the system, and shaped to bring the incoming photons to a common focus in 12 m distance. The mission aims to deliver an angular resolution of better than nine arc-seconds (Half-energy width) and effective area of about 1.1 m2 at an energy of 1 keV. We present in this paper the status of the optics production and illustrate not only recent x-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
Athena is the European Space Agency’s next flagship telescope, scheduled for launch in the 2030s. Its 2.5 m diameter mirror will be segmented and comprise more than 600 individual Silicon Pore Optics (SPO) mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of grazing incidence primary-secondary mirror pairs, each mirror made of silicon, coated to increase the effective area of the system, and shaped to bring the incoming photons to a common focus 12 m away. The mission aims to deliver a half-energy width of 5" and an effective area of about 1.4 m2 at 1 keV. We present the status of the optics technology, and illustrate recent X-ray results and the progress made on the environmental testing, manufacturing and assembly aspects of the optics.
Athena is the European Space Agency’s next flagship x-ray telescope, scheduled for launch in the 2030s. Its 2.5-m diameter mirror will be segmented and comprise more than 600 individual Silicon Pore Optics (SPO) grazing-incidence-angle imagers, called mirror modules. Arranged in concentric annuli and following a Wolter-Schwartzschild design, the mirror modules are made of several tens of primary-secondary mirror pairs, each mirror made of mono-crystalline silicon, coated to increase the collective area of the system, and shaped to bring the incoming photons to a common focus 12 m away. Aiming to deliver a half-energy width of 5”, and an effective area of about 1.4 m2 at 1 keV, the Athena mirror requires several hundred m2 of super-polished surfaces with a roughness of about 0.3 nm and a thickness of just 110 µm. SPO, using the highest-grade double-side polished 300 mm wafers commercially available, were invented for this purpose and have been consistently developed over the last several years to enable next-generation x-ray telescopes like Athena. SPO makes it possible to manufacture cost-effective, high-resolution, large-area x-ray optics by using all the advantages that mono-crystalline silicon and the mass production processes of the semiconductor industry provide. Ahead of important programmatic milestones for Athena, we present the status of the technology, and illustrate not only recent x-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of the technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.