In this paper, a new magneto-rheological MR) fluid damper is proposed to achieve lower limb exoskeleton of the rehabilitation device. This is achieved by designing the piston configuration as both a square geometry and a circular geometry. By doing this, controllability of the both vibration and moment in the horizontal axis can be obtained. In the design process, two operation modes of MR fluid including flow mode and shear mode are used and the principal design parameters of the square piston are optimized to have low limb exoskeleton as possible under imposed design constraints such as size. This principle is also applied for the circular piston. In addition, the configuration parameters of the design are obtained by optimization using a commercial software as ANSYS ADPL. It is shown through computer simulations that the requirements of the force associated with the limb exoskeleton are successful achieved.
In this study, a new pressure seal, which can adjust the magnitude of the yield stress of the chamber containing a magnetorheological (MR) fluid, is investigated. The proposed seal can maintain the required pressure during the rotation of the shaft which may vary due to the friction. This design is based on the field-dependent special characteristics of MR fluid. Specifically, the inherent property of MR fluid changing from the liquid phase to semi-solid phase by applying the magnitude is utilized to achieve this goal. Owing to the semi-solid property of MR fluid under the magnetic field, MR fluid can replace the role of silicon materials in designing seal structure. Due to the high sealing provision, the proposed seal can be applicable to pressure locking, dust- and water-proof, and mating two different pieces. The maximal pressure which can be handled by the proposed is derived and analyzed in each case. The behaviors of fluid inside the housing is simulated and observed through the commercial software. The optimization of seal dimensions are then calculated without the pressure loss in design process.
In this paper, an exoskeleton for human knee is proposed. This design is based on the magnetorheological (MR) fluid theory and its application on vibration damper. The damper is analyzed and developed to suit the human motion. The motor torque is optimized that the knee torque is smallest as possible. After formulating the equations related to motor torque, external forces on human leg and damper force, the design is undertaken followed by optimization using ANSYS APDL software. The objective function in this software is concentrated on maximal damping force of damper (supporting 30% force when human foot lands on the ground).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.