The observation of polar clouds is of great significance to studying climate change in Antarctica. The modified Klett–Fernald method and Mie scattering light detection and ranging (Lidar) were used to study the characteristics of low-altitude clouds from February 15 to March 2, 2017 at the Great Wall Station. The temporal and spatial variations in the cloud extinction coefficient were obtained, and the optical and physical characteristics of the low-altitude clouds were statistically analyzed. The analysis shows that the near-ground atmosphere is very clean and the atmosphere at low heights is covered by low-altitude clouds. The meteorological and Lidar data show that the polar cyclone may be the main driving force of the cloud-height changes at this station.
Micro pulse lidar(MPL) is an effective tool for atmospheric aerosol and cloud detecting. In order to make the structure of the micro pulse lidar more compact, solve the problem that it always very difficult to adjust the transmitting and receiving optical paths to parallel in the traditional system, avoid the influence of the geometric overlap factor and reduce the complexity of the data processing, Anhui institute of optics and fine mechanics of the Chinese academy of sciences designs a new type of micro pulse lidar, particularly designs the followed up optical unit of the micro pulse lidar. A combination of emitting and receiving fibers in a signal bundle changes the structure of the subsequent optical unit in the traditional system to make the transmitting and receiving optical paths coaxial. The public end of the Y type optical fiber bundle is composed of a transmitting optical fiber in the center and eight receiving optical fibers in the periphery. After a brief introduction of the new system, the key parameters of the new micro pulse lidar system and the Y type optical fiber bundle were described in some detail. In order to verify the feasibility of the new structure of the micro pulse lidar system, a continuous observation experiment was carried out in Hefei area to detect the horizontal distribution of the atmospheric aerosol and pollutions. The data measured in the experiment in the November 2013 was processed with Fernald method and the profile of the atmospheric aerosol horizontal extinction coefficient distribution was inverted. The data inversion results showed that: the data acquired by the new lidar system and the extinction coefficient distribution inverted by Fernald algorithm are all very reasonable, and the time-space distribution of atmospheric aerosols extinction coefficient can reflect the distribution of the atmospheric aerosol and pollutions near the ground effectively. All of the experiment results indicate that the design of the new micro pulse lidar system is effective.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.