Wobbling phenomena of spatial soliton in an inhomogeneous medium is investigated. By means of effective-particle approach method, we analyze the dynamics of the solitons. The results show that solitons wobble in transverse direction during propagation. The normalized width of the waveguide play a key role in determining the wobbling periods of solitons. Furthermore, the propagation dynamics of the solitons are simulated numerically and a good agreement is obtained between the analysis and the numerical results. This phenomenon may be used in all-optical router, switcher etc.
The existence and stability properties of three-component vector solitons are studied. Linear stability analysis and numerical simulations show that when the power of vortex component is below a threshold, the fundamental component is stable, and the vortex components break up into dipole solitons; the dipole solitons originating from the vector solitons with total zero topological charges are very unique. While if the power of vortex components is higher than that threshold, all soliton components are unstable and break up into independent fundamental solitons. The instability of solitons with total zero topological charges is largely suppressed comparing to that of solitons with total nonzero topological charges.
The internal oscillation of spatial optical solitons in a cubic-quintic nonlinear medium is investigated systemically in their stability parameter region. Both internal oscillations of fundamental soliton and localized optical vortex soliton are determined. Internal modes with and without angular dependence are found. Our results show that internal oscillations exist only when the power of the soliton exceeds a threshold value. We also simulate the dynamics of soliton perturbed by internal modes. Numerical results show that internal oscillations induced by these modes are very robust. Some novel and interesting phenomena are discovered during the propagation process. Evolution of the perturbed state visually appears that the spatial soliton is uniformly (unevenly) breathing or rotating around the propagating axis periodically, the periods approximately equal to that of the internal oscillations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.