Based on the motion mechanism of double-sided polishing, the motion trajectory model of polishing pad relative to medium-aperture optical components was established. This research simulated the trajectory of the abrasive particle relative to the optical component, and then the trajectory was obtained under different processing parameters. Based on the simulation results, different processing parameters were optimized which had been used for double-sided polishing experiments of optical components. The surface roughness and figure of both sides of the optical component after double-sided polishing were detected. The detection results showed that the surface roughness approached 0.5nmRMS, and the surface figure was 0.5λ(λ=632.8nm) for 150mm×150mm×7mm specification medium-aperture optical components.
Deep ultraviolet (deep-UV) spectroscopy has been proved to be a promising technique for in-situ and real-time nutrient measurement, where key components, such as deuterium lamp light source with wide wavelength range from 190nm to 400nm, has been deployed. For water with multi-contaminations, experimental results indicated that the luminescence emission excited by the wide band light source lead to considerable measurement error. It is desired to develop a narrowband multi-wavelength ultraviolet (UV) light source for a more accurate measurement. However, rare research has been done towards such functional devices, such as wavelength filters and switches, in deep-UV band. Therefore, a novel deep-UV narrow-band filter, based on the deep-UV transparent rectangular single-mode optical waveguide and arrayed waveguide grating (AWG) structure, is proposed and designed in this manuscript. In order to reduce the loss and crosstalk, we optimize the decoupling distance and the number of array waveguide. In conclusion, this deep-UV multiwavelength narrow band-pass filter is designed to be single-channel input and 7-channel output with central wavelengths from 210nm to 240nm, channel spacing of 5nm. This device has -3dB bandwidth of 1.87nm, inter-channel cross-talk of - 23.80dB, and insertion loss of -4.25dB, device size of 40 mm (length) x 10 mm (width) x 2mm (thickness), having integratable interface with waveguide type optical switches and detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.