Recent years have seen significant advances in artificial intelligence (AI) and machine learning (ML) technologies applicable to coalition situational understanding (CSU). However, state-of-the-art ML techniques based on deep neural networks require large volumes of training data; unfortunately, representative training examples of situations of interest in CSU are usually sparse. Moreover, to be useful, ML-based analytic services must be capable of explaining their outputs. We describe an integrated CSU architecture that combines neural networks with symbolic learning and reasoning to address the problem of sparse training data. We also demonstrate how explainability can be achieved for deep neural networks operating on multimodal sensor feeds. The work focuses on real-time decision making settings at the tactical edge, with both the symbolic and neural network parts of the system --- including the explainabilty approaches --- able to deal with temporal features.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.