Here, we present a rapid dual-view projection imaging method with two-photon glutamate uncaging capability based on an upright Bessel beam light-sheet microscopy setup. Compared with light-sheet imaging, our projection imaging method can significantly improve the volumetric rate for neural imaging. In addition, an independent laser scanning module is designed for 2P uncaging, allowing simultaneous synaptic resolution of stimulation and 100 Hz volumetric imaging of neural activity in deep tissue. Imaging results from mouse brain slices under 2P glutamate uncaging will be presented.
Light-sheet fluorescence microscopy serves as a fast high-resolution imaging method for neural imaging. However, its 3D imaging ability is often limited by the speed of scanning the detection focal plane in the z-direction. Herein, we develop a rapid random z-access two-photon light-sheet microscope, which incorporates a two-photon Bessel beam light-sheet microscope with a dynamically driven electrical tunable lens (ETL). With a precise ETL calibration process and a novel rapid random z-access method, our system can selectively scan any desired z-section in the 3D imaging volume at the speed of 100 frame-per-second, and allows neural activates monitoring on the living brain tissue at video rate.
Traditional optical imaging systems are designed with the assumption that light travels along straight paths inside the sample. Light scattering in biological tissue leads to high background and blurry images in traditional imaging methods. We report technique advancements in structured illumination with light sheet imaging (SIM-LS) in deep tissue. SIM-LS is capable of removing image background generated by scattering and restoring optical resolution in deep tissue imaging. With two-photon Bessel beam excitation, SIM-LS supports up to 500 micron wide field of view 3D imaging in embryos and brain tissue at subcellular resolution.
Neuroscience research is propelled by advance imaging tools, which ideally could provide high spatial and temporal resolution imaging. However, available fast 3-dimensional optical sectioning approaches applicable to deep tissue and large scale in-vivo imaging are still limited. We develop a novel two-photon Bessel beam scanning light sheet microscope, which has two distinct imaging modes: 1) The light-sheet imaging mode enables sub-micron 3D imaging over hundreds of microns field of view, which is well adapted to the neural tissue with complex structure; 2) The projection imaging mode aims to capture fast neural activities at up to 100 volumes per second. Imaging results of various neural specimens will be presented.
Laser scanning light-sheet imaging allows fast 3D image of live samples with minimal bleach and photo-toxicity. Existing light-sheet techniques have very limited capability in multi-label imaging. Hyper-spectral imaging is needed to unmix commonly used fluorescent proteins with large spectral overlaps. However, the challenge is how to perform hyper-spectral imaging without sacrificing the image speed, so that dynamic and complex events can be captured live.
We report wavelength-encoded structured illumination light sheet imaging (λ-SIM light-sheet), a novel light-sheet technique that is capable of parallel multiplexing in multiple excitation-emission spectral channels. λ-SIM light-sheet captures images of all possible excitation-emission channels in true parallel. It does not require compromising the imaging speed and is capable of distinguish labels by both excitation and emission spectral properties, which facilitates unmixing fluorescent labels with overlapping spectral peaks and will allow more labels being used together.
We build a hyper-spectral light-sheet microscope that combined λ-SIM with an extended field of view through Bessel beam illumination. The system has a 250-micron-wide field of view and confocal level resolution. The microscope, equipped with multiple laser lines and an unlimited number of spectral channels, can potentially image up to 6 commonly used fluorescent proteins from blue to red. Results from in vivo imaging of live zebrafish embryos expressing various genetic markers and sensors will be shown. Hyper-spectral images from λ-SIM light-sheet will allow multiplexed and dynamic functional imaging in live tissue and animals.
Fourier multiplexed fluorescence lifetime imaging (FmFLIM) scanning laser optical tomography (FmFLIM-SLOT) combines FmFLIM and Scanning laser optical tomography (SLOT) to perform multiplexed 3D FLIM imaging of live embryos. The system had demonstrate multiplexed functional imaging of zebrafish embryos genetically express Foster Resonant Energy Transfer (FRET) sensors.
However, previous system has a 20 micron resolution because the focused Gaussian beam diverges quickly from the focused plane, makes it difficult to achieve high resolution imaging over a long projection depth. Here, we present a high-resolution FmFLIM-SLOT system with achromatic Bessel beam, which achieves 3 micron resolution in 3D deep tissue imaging.
In Bessel-FmFLIM-SLOT, multiple laser excitation lines are firstly intensity modulated by a Michelson interferometer with a spinning polygon mirror optical delay line, which enables Fourier multiplexed multi-channel lifetime measurements. Then, a spatial light modulator and a prism are used to transform the modulated Gaussian laser beam to an achromatic Bessel beam. The achromatic Bessel beam scans across the whole specimen with equal angular intervals as sample rotated. After tomography reconstruction and the frequency domain lifetime analysis method, both the 3D intensity and lifetime image of multiple excitation-emission can be obtained.
Using Bessel-FmFLIM-SLOT system, we performed cellular-resolution FLIM tomography imaging of live zebrafish embryo. Genetically expressed FRET sensors in these embryo will allow non-invasive observation of multiple biochemical processes in vivo.
Optical tomography allows isotropic 3D imaging of embryos. Scanning-laser optical tomography (SLOT) has superior light collecting efficiency than wide-field optical tomography, making it ideal for fluorescence imaging of live embryos.
We previously reported an imaging system that combines SLOT with a novel Fourier-multiplexed fluorescence lifetime imaging (FmFLIM) technique named FmFLIM-SLOT. FmFLIM-SLOT performs multiplexed FLIM-FRET readout of multiple FRET sensors in live embryos. Here we report a recent effort on improving the spatial resolution of the FmFLIM-SLOT system in order to image complex biochemical processes in live embryos at the cellular level.
Optical tomography has to compromise between resolution and the depth of view. In SLOT, the commonly-used focused Gaussian beam diverges quickly from the focal plane, making it impossible to achieve high resolution imaging in a large volume specimen. We thus introduce Bessel beam laser-scanning tomography, which illuminates the sample with a spatial-light-modulator-generated Bessel beam that has an extended focal depth. The Bessel beam is scanned across the whole specimen. Fluorescence projection images are acquired at equal angular intervals as the sample rotates. Reconstruction artifacts due to annular-rings of the Bessel beam are removed by a modified 3D filtered back projection algorithm.
Furthermore, in combination of Fourier-multiplexing fluorescence lifetime imaging (FmFLIM) method, the Bessel FmFLIM-SLOT system is capable of perform 3D lifetime imaging of live embryos at cellular resolution. The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove that Bessel FmFLIM-SLOT is a promising imaging method in development biology research.
Optical projection tomography (OPT) creates isotropic 3D imaging of tissue. Two approaches exist today: Wide-field OPT illuminates the entire sample and acquires projection images with a camera; Scanning-laser optical tomography (SLOT) generates the projection with a moving laser beam and point detector. SLOT has superior light collecting efficiency than wide-field optical tomography, making it ideal for tissue fluorescence imaging.
Regardless the approach, traditional OPT has to compromise between the resolution and the depth of view. In traditional SLOT, the focused Gaussian beam diverges quickly from the focused plane, making it impossible to achieve high resolution imaging through a large volume specimen. We report using Bessel beam instead of Gaussian beam to perform SLOT. By illuminating samples with a narrow Bessel beam throughout an extended depth, high-resolution projection images can be measured in large volume.
Under Bessel illumination, the projection image contains signal from annular-rings of the Bessel beam. Traditional inverse Radon transform of these projections will result in ringing artifacts in reconstructed imaging. Thus a modified 3D filtered back projection algorithm is developed to perform tomography reconstructing of Bessel-illuminated projection images. The resulting 3D imaging is free of artifact and achieved cellular resolution in extended sample volume.
The system is applied to in-vivo imaging of transgenic Zebrafish embryos. Results prove Bessel SLOT a promising imaging method in development biology research.
Nonlinear structured illumination microscopy (SIM) allows full-field imaging at resolutions <100 nm. Two
nonlinear effects, excitation saturation (SSIM) and the photo-switching of protein had been applied to nonlinear
SIM. We report a new SIM technique which utilizes the nonlinearity of STED effect. Resolution and signal noise
ratio simulation shows that STED-SIM may serve as a better alternative to SSIM and SIM with photo-switchable
protein.
SIM requires a strong nonlinear effect in a large area. We use Surface Plasmon Resonant to enhance of evanescence
field near a dielectric-metal-dielectric interface. An 8 times STED effect enhancement is achieved on an optimized
glass-silver-glass-water planar structure. We further use the interference of two SPR-enhanced STED fields
propagating at opposite direction to generate a 1D structured STED field. Combined with a uniform excitation field,
the structure STED field allows full field total internal reflection imaging with an enhanced resolution along the
structured dimension. Less than 50 nm resolution is demonstrated.
A STED-SIM microscope with 2D structured STED field is under development. Future research will apply the
microscope to superresolution imaging of membrane resident or near membrane structure at super-resolution in live
cells.
We previously introduced the biological compact disk (BioCD) as a sensitive detection platform to detect patterned biomolecules immobilized on the surface of a spinning disk. Spinning-disk interferometry allows high speed detection (10 microseconds per spot) of optical path length changes down to sub-nanometer scales
with high repeatability. The key to performing stable interferometry on a mechanically spinning disk is self-referencing: locking the phase of the signal and reference beams to quadrature (μ/2 phase difference) independent of mechanical vibrations or relative motion. Two quadrature classes of BioCD have been reported previously: the micro-diffraction class (MD-Class) and the adaptive optical class
(AO-Class) {Peng, 2004 #565; Varma, 2004 #440}. In this paper, we introduce a third class of BioCD, the Phase-Contrast-Class (PC-Class) BioCD. Protein is immobilized using photolithography on a disk in a 1024 spoke pattern. The edge of the printed protein pattern diffracts a focused laser beam that is detected in the Fourier plane with a split detector. The signal from the split detector is differenced, which plays a role in the electronic domain similar to that of a phase plate in optical phase contrast imaging. The PC-Class BioCD is simple in both theory and implementation, requiring no microstructure fabrication and no complex detection. Its potential in high
speed label-free biosensing is demonstrated by a two-analyte immunoassay that shows good rejection of nonspecific binding and low antibody cross-reactivity. Immunoassays were performed against IgG immunoglobulins with detection of bound analyte on pictogram level. To show the potential of scaling up to hundreds or thousands of analytes per disk, an experiment was also performed with small drops of protein solution.
The speed of interferometric detection is at least 1000 times faster than the fluorometric detection used in the vast majority of clinical diagnostic systems. This opens the possibility to perform thousands of assays in the time it takes fluorescence to perform only one. Molecules immobilized on a spinning disk, like a CD, present the fastest and simplest means of interrogating thousands of micron-scale interferometer elements per second. However, the challenge of interferometry on a spinning disk is to maintain stable phase in the presence of mechanical vibration. In this paper, we demonstrate the first use of adaptive optics in an adaptive optical homodyne mixer to perform interferometry on a multi-analyte BioCD. The BioCD is a 4" diameter glass disk printed with a spoke pattern of protein. When the disk spins, the periodic protein pattern is transferred into a high-speed optical phase modulation by spinning the disk at 3000 rpm in the path of a probe laser. A nonlinear optical film mixes the signal beam with a stable reference beam in a two-wave mixing configuration that adaptively phase-locks the two beams to create stable phase in spite of mechanical vibration. Specific binding of antibody to printed antigen is detected as an increased homodyne signal. Multi-analyte detection on Anti Mouse and Anti Rabbit IgG is performed in which Mouse IgG and Rabbit IgG act as the non-specific reagent to each other. Detection is made on circular tracks. The technique has the potential of fast screening for large numbers of protein interactions.
We previously reported the application of spinning-disk interferometry, implemented in a compact optical sensor format called the BioCD, in the detection of antigen-antibody recognition. The BioCD consists of interferometers micro-fabricated on the surface of a 2” laser mirror disk, which can spin up to 6000 rpm resulting in high data acquisition rates. The interferometric elements are fabricated by evaporating gold ridges on the mirror substrate operating in the linear sensitivity regime of the interferometer defined as quadrature. Antibodies or proteins are immobilized on the gold interferometric structures through alkanethiols, and the target molecules are immobilized by application of reagents or samples to the disk while it is spinning. The centrifugal force distributes the sample over the sensor surface, causing a change in the optical phase of the interferometric elements, which is detected in real time using a lock-in amplifier with small detection bandwidth. We detected the binding of Mouse IgG by immobilized Anti-Mouse IgG using the BioCD with a detection limit of 1 ng/ml and low non-specific binding. Furthermore, the selectivity of specific binding was found to be greater than 1 in 10000, determined using the response curve of the BioCD to exposures of specific and non-specific analytes of varying concentrations. This opens up the possibility of simultaneous detection of several analytes with the same sensor while maintaining high selectivity. In this paper we demonstrate simultaneous detection of Rabbit and Mouse IgG on the same disk. The sensitivity limit for multi-analyte detection remains the same as that for a single analyte. In addition to the ability to do simultaneous detection, the current detection scheme presents a way to reference the results of one track with respect to others, thus increasing the reliability of the data. Used in conjunction with high-density protein patterning techniques, the BioCD has the potential to be a highly multiplexed label-free high-speed sensor.
Spinning-disk self-referencing laser interferometers are being developed as high-speed high-sensitivity platforms for immunoassay and proteomics applications. Their compact disc (CD) formats have the potential for ultra-high-throughput multianalyte assays as well as for binding kinetics and quantitative analysis. Self-referencing interferometers are immune to mechanical variations, enabling interferometric sensitivities and speeds that are several orders of magnitude larger than for their counterpart fluorometric techniques. This paper defines for the first time three classes of the BioCD that differ in their method of self-referencing and reviews their relative merits and sensitivities. Each uses a near-field probe with far-field detection. The three classes are: microdiffraction, adaptive optical, and photonic cavity.
Holographic optical coherence imaging (OCI) has been used to acquire depth resolved images in tumor spheroids. OCI is a coherence-domain imaging technique that uses dynamic holography as the coherence gate. The technique is full-frame (en face) and background free, allowing real-time acquisition to a digital camera without motional reconstruction artifacts. We describe the method of operation of the holographic OCI on highly scattering specimens of tumor spheroids. Because of the sub-resolution structure in the sample, the holograms consist primarily of speckle fields. We present two kinds of volumetric data acquisition. One is uses fly-throughs with a stepping reference delay. Another is static holograms at a fixed reference delay with the coherence gate inside the tumor spheroids. At a fixed reference delay, the holograms consist of time-dependent speckle patterns. The method can be used to study cell motility inside tumor spheroids when metabolic or cross-linking poisons are delivered to the specimens.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.