Star tracker is an important instrument of measuring a spacecraft’s attitude; it measures a spacecraft’s attitude by matching the stars captured by a camera and those stored in a star database, the directions of which are known. Attitude accuracy of star tracker is mainly determined by star centroiding accuracy, which is guaranteed by complete star segmentation. Current algorithms of star segmentation cannot suppress different interferences in star images and cannot segment stars completely because of these interferences. To solve this problem, a new star target segmentation algorithm is proposed on the basis of mathematical morphology. The proposed algorithm utilizes the margin structuring element to detect small targets and the opening operation to suppress noises, and a modified top-hat transform is defined to extract stars. A combination of three different structuring elements is utilized to define a new star segmentation algorithm, and the influence of three different structural elements on the star segmentation results is analyzed. Experimental results show that the proposed algorithm can suppress different interferences and segment stars completely, thus providing high star centroiding accuracy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.