Military personnel and first responders are in critical need of a sensitive technology for the rapid evaluation and diagnosis of exposure to adverse chemical agents. Ideally such a technology would be automated, easily portable, possess a high degree of sensitivity and specificity, and provide non-invasive assessment of health status. A potential method for meeting these requirements is via monitoring of ocular characteristics. Due to the interconnection between the eyes and the various physiological systems of the body, insults to the body may create a unique "thumbprint" upon the eyes based upon how these various physiological systems are differentially affected. In turn, these thumbprints (biomarkers) may be used to perform diagnostic evaluations of an individual’s health status. Based upon this principle, the Ocular Scanning Instrumentation (OSI) technology is being developed as an automated device for non-invasive monitoring of optically apparent characteristics and attributes of the eyes for in-the-field diagnosis of battlefield traumas, insults, and threat agent exposures. The current manuscript presents comparative data for two of the agents which we have evaluated, carbon monoxide and cyanide. The defined methods provide the required specificity and sensitivity needed for detecting exposures at time points which provide an ample therapeutic window for medical intervention.
The sensitivity of the eye’s reaction to a wide variety of chemicals/toxins and its role as a gauge for internal homeostasis (e.g., cardiovascular and neurophysiological imbalances) has been extensively researched via many scientific disciplines. New techniques and equipment are both harnessing and utilizing this information to define a modern approach to the field of non-invasive early detection of a vast range of physical abnormalities, injuries, and illnesses. Early detection provides an invaluable tool in the subsequent success of treating such conditions. The application of these techniques to the detection of exposure to chemical threat agents such as organophosphate nerve agents and cyanide provides an important advancement in the ability to limit the deleterious effects of these agents. The Ocular Scanning Instrumentation (OSI) technology involves the use of an automated device for the continuous or programmed monitoring of optically apparent characteristic(s) and attributes of the eye that may serve as an early-warning system for possible complications based upon generalized information obtained from ocular biomarkers. Described herein is the analysis of primary ocular biomarkers for organophosphate (miosis) and cyanide (venous blood coloration) exposure.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.