Proceedings Article | 5 October 2015
KEYWORDS: Perovskite, Photovoltaics, Solar cells, Optical resonators, Quantum efficiency, Amorphous silicon, Semiconductors, Organic photovoltaics, Semiconductor materials, Geometrical optics
This talk will describe an approach to create architecturally compatible and decorative thin-film-based hybrid photovoltaics [1]. Most current solar panels are fabricated via complex processes using expensive semiconductor materials, and they are rigid and heavy with a dull, black appearance. As a result of their non-aesthetic appearance and weight, they are primarily installed on rooftops to minimize their negative impact on building appearance. Recently we introduced dual-function solar cells based on ultra-thin dopant-free amorphous silicon embedded in an optical cavity that not only efficiently extract the photogenerated carriers but also display distinctive colors with the desired angle-insensitive appearances [1,2]. The angle-insensitive behavior is the result of an interesting phase cancellation effect in the optical cavity with respect to angle of light propagation [3]. In order to produce the desired optical effect, the semiconductor layer should be ultra-thin and the traditional doped layers need to be eliminated. We adopted the approach of employing charge transport/blocking layers used in organic solar cells to meet this demand. We showed that the ultra-thin (6 to 31 nm) undoped amorphous silicon/organic hybrid solar cell can transmit desired wavelength of light and that most of the absorbed photons in the undoped a-Si layer contributed to the extracted electric charges. This is because the a-Si layer thickness is smaller than the charge diffusion length, therefore the electron-hole recombination is strongly suppressed in such ultra-thin layer. Reflective colored PVs can be made in a similar fashion. Light-energy-harvesting colored signage was demonstrated. Furthermore, a cascaded photovoltaics scheme based on tunable spectrum splitting can be employed to increase power efficiency by absorbing a broader band of light energy. Our work provides a guideline for optimizing a photoactive layer thickness in high efficiency hybrid PV design, which can be adopted by other material systems as well. Based on these understandings, we have also developed colored perovskite PV by integrating an optical cavity with the perovskite semiconductors [4]. The principle and experimental results will be presented.
1. J. Y. Lee, K. T. Lee, S.Y. Seo, L. J. Guo, “Decorative power generating panels creating angle insensitive transmissive colors,” Sci. Rep. 4, 4192, 2014.
2. K. T. Lee, J.Y. Lee, S.-Y. Seo, and L. J. Guo, “Colored ultra-thin hybrid photovoltaics with high quantum efficiency,” Light: Science and Applications, 3, e215, 2014.
3. K. T. Lee, S.-Y. Seo, J.Y. Lee, and L. J. Guo, “Ultrathin metal-semiconductor-metal resonator for angle invariant visible band transmission filters,” Appl. Phys. Lett. 104, 231112, (2014); and “Strong resonance effect in a lossy medium-based optical cavity for angle robust spectrum filters,” Adv. Mater, 26, 6324–6328, 2014.
4. K. T. Lee, M. Fukuda, L. J. Guo, “Colored, see-through perovskite solar cells employing an optical cavity,” Submitted, 2015