This article presents a chip-scale package (CSP) with conformal and uniform structures for white light-emitting diodes used in lighting and backlight unit (BLU) applications. The CSP structures produce higher light extraction efficiency and lower assembly-dependent packaging compared with conventional surface-mounted devices (SMDs). Simulation results show that compared with SMDs, the luminous efficiency of CSP structures is 8.81% higher in lighting applications and 9.43% higher in BLU applications. This is likely due to light loss in the light bowl of the SMDs. Moreover, CSPs with a conformal phosphor structure exhibit low assembly dependence and redundancy, and rb-CSPs with a conformal structure are a more effective light source in both lighting and BLU applications.
This paper presents a “hybrid” structure for the coating of yellow YAG∶Ce3+ phosphor on blue GaN-based light-emitting diodes (LEDs). The luminous efficiency of the hybrid phosphor structure improved by 5.9% and 11.7%, compared with the conventional remote and conformal phosphor structures, respectively, because of the increased intensity of the yellow component. The hybrid structure also has an advantage in the phosphor usage reduction for the LEDs. Furthermore, the electric intensity of the hybrid phosphor structure was calculated for various thicknesses by conducting TFCalc32 simulation, and the enhanced utilization of blue rays was verified. Finally, the experimental results were consistent with the simulation results performed using the Monte-Carlo method.
In recent year, InGaN-based alloy was also considered for photovoltaic devices owing to the distinctive material properties which are benefit photovoltaic performance. However, the Indium tin oxide (ITO) layer on top, which plays a role of transparent conductive oxide (TCO), can absorb UV photons without generating photocurrent. Also, the thin absorber layer in the device, which is consequent result after compromising with limited crystal quality, has caused insufficient light absorption. In this report, we propose an approach for solving these problems. A hybrid design of InGaN/GaN multiple quantum wells (MQWs) solar cells combined with colloidal CdS quantum dots (QDs) and back side distributed Bragg reflectors (DBRs) has been demonstrated. CdS QDs provide down-conversion effect at UV regime to avoid absorption of ITO. Moreover, CdS QDs also exhibit anti-reflective feature. DBRs at the back side have effectively reflected the light back into the absorber layer. CdS QDs enhance the external quantum efficiency (EQE) for light with wavelength shorter than 400 nm, while DBRs provide a broad band enhancement in EQE, especially within the region of 400 nm ~ 430 nm in wavelength. CdS QDs effectively achieved a power conversion efficiency enhancement as high as 7.2% compared to the device without assistance of CdS QDs. With the participation of DBRs, the power conversion efficiency enhancement has been further boosted to 14%. We believe that the hybrid design of InGaN/GaN MQWs solar cells with QDs and DBRs can be a method for high efficiency InGaN/GaN MQWs solar cells.
We fabricated the colloidal quantum-dot light-emitting diodes (QDLEDs) with the HfO2/SiO2-distributed Bragg reflector
(DBR) structure using a pulsed spray coating method. Moreover, pixelated RGB arrays, 2-in. wafer-scale white light
emission, and an integrated small footprint white light device were demonstrated. The experimental results showed that
the intensity of red, blue, and green (RGB) emissions exhibited considerable enhancement because of the high
reflectivity in the UV region by the DBR structure, which subsequently increased the use in the UV optical pumping of
RGB QDs. In this experiment, a pulsed spray coating method was crucial in providing uniform RGB layers, and the
polydimethylsiloxane (PDMS) film was used as the interface layer between each RGB color to avoid crosscontamination
and self-assembly of QDs. Furthermore, the chromaticity coordinates of QDLEDs with the DBR structure
remained constant under various pumping powers in the large area sample, whereas a larger shift toward high color
temperatures was observed in the integrated device. The resulting color gamut of the proposed QDLEDs covered an area
1.2 times larger than that of the NTSC standard, which is favorable for the next generation of high-quality display
technology.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.